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ABSTRACT 

Structural identification is a useful tool for detecting damage and damage evolution in a 

structure. The initiation of damage in a structure and its subsequent growth are mainly associated 

with nonlinear behaviors. While linear dynamics of a structure are easy to simulate, nonlinear 

structural dynamics have more complex dynamics and amplitude dependence that do require more 

sophisticated simulation tools and identification methods compared to linear systems. 

Additionally, there are generally many more parameters in nonlinear models and the responses 

may not be sensitive to all of them for all inputs. To develop model selection methods, an 

experiment is conducted that uses an existing device with repeatable behavior and having an 

expected model from the literature. In this case, an MR damper is selected as the experimental 

device. The objective of this research is to develop and demonstrate a method to select the most 

appropriate model from a set of identified stochastic models of a nonlinear device. The method is 

developed using numerical example of a common nonlinear system, and is then implemented on 

an experimental structural system with unknown nonlinear properties. Bayesian methods are used 

because they provide a distinct advantage over many other existing methods due to their ability to 

provide confidence on answers given the observed data and initial uncertainty. These methods 

generate a description of the parameters of the system given a set of observations. First, the selected 

model of the MR damper is simulated and used for demonstrating the results on a numerical 

example. Second, the model selection process is demonstrated on an experimental structure based 

on experimental data. This study explores the use of the Bayesian approach for nonlinear structural 

identification and identifies a number of lessons for others aiming to employ Bayesian inference.  

 



 
 

18 

 INTRODUCTION 

1.1 Background 

Structures are often subjected to different types of loads. The factor of safety accounted for 

during the design of a structure plays an important role in protecting the structure when subjected 

to excessive loads. However, structures are still prone to damage. Some of the reasons that 

contribute to the damage are extreme loading conditions that are not accounted for in the design, 

modifications on the existing structure, or due to the factors that were not accounted for in the 

design. The study of damage to these structures often follows a conventional linear approach. 

However, the linear analysis of some of the components of the structure often tend to be inadequate 

and points to the nonlinear dynamic analysis of the structure. Several incidents like the collapse of 

Tacoma Narrows Bridge in 1940 showed that there is a need to consider nonlinear effects during 

the design process and while investigating the cause of damage to the structure.  

 

Identification of nonlinearity in experimental structure plays a major role in the study of 

nonlinear collapse mechanisms. It is evident from literature that several methods are efficacious 

in quickly identifying nonlinearity in experiments. Some of these methods include restoring force 

identification, static testing, Bayesian model identification, etc. Bayesian structural identification 

is a prominent approach when identifying nonlinearities in highly noisy data environments. When 

using technique of recursive identification, filtering methods adopted include the particle filter and 

the Kalman filter.  

 

The current study focuses on the application of Bayesian structural identification methods, 

specifically the Kalman filter family of algorithms, to a scaled-down model of a building with a 

device simulating material nonlinearity. Though this building is small-scale, the dimensionality of 

the identification problem will be analogous to the full-scale system, without undue model 

uncertainty. The identification approach followed for the scaled-down model can then be extended 

to the identification of nonlinearity on actual structures. The findings of this research will 

contribute to the process of model selection for a nonlinear device installed on an experimental 

structure.  
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1.2 Objective 

The primary objectives of this thesis can be described as: 

• Choose a device that exhibits a repeatable nonlinearity in an experimental structure. The 

device simulating nonlinearity is selected based on comparative literature study of different 

types of devices. The most appropriate device for experimental purpose is selected based 

on its feasibility in terms of controllability, repeatability and the ability to quantify its 

behavior physically.  

• Provide a numerical example of the identification method using the selected nonlinear 

device with a computational structural model. This example will verify the code and 

illustrate the behavior of the device when connected to the experimental structure.  

• Conduct tests with the device on the experimental structure and implement a generalized 

model selection procedure to select the most suitable model of the nonlinear device that 

represents the experimental behavior. The experiments are performed in different sets and 

the response of the structure with and without the nonlinear device is studied.  

1.3 Organization 

The thesis has been organized into six chapters. A detailed literature study on the nonlinear 

structural identification method and the selection of nonlinear device is provided in Chapter 2. 

This chapter reviews different nonlinear devices that can be used for the study and identifies the 

most appropriate device based on the current experimental setup. Chapter 3 gives an overview of 

model selection methods and demonstrates the method selected using a computational model of 

the selected nonlinear device and structure. This chapter lays the foundation for the model selection 

process performed on the experimental structure in the subsequent chapters. The setup of the 

selected nonlinear device is described in Chapter 4. The nonlinear device is installed on a SDOF 

scaled-down experimental structure. This chapter explains the overall test setup for the experiment. 

Chapter 5 explains the test input used for the experiment. This chapter continues the model 

selection process from Chapter 3 and with the added challenge of applying the method to 

experimental results in which the true model of the device is not known. The most appropriate 

model is then selected for the experimental device used. Chapter 6 concludes the research findings 

and discusses the future work. 
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 LITERATURE REVIEW 

2.1 Nonlinear Structural Identification 

Nonlinear structural identification is usually done with different methods like sequential 

Monte Carlo, Hw filter, extended Kalman filter (EKF), least square estimation (LSE), etc. The 

Bayesian method for nonlinear estimation of states characterizes the uncertainty in the 

identification process using a probability density function (PDF) created from the available data. 

The Kalman filter is normally used to estimate the linear behavior using a Gaussian distribution 

(Kalman, 1960). It is a process of inferring the hidden states of the dynamic system from 

experimental measurements of the systems behavior, which are noise-contaminated. The method 

represents the optimal filter for linear systems, and uses a theoretical model of the system to infer 

the posterior probability of the states for each measurement step. The application of Kalman filter 

in complex structural health monitoring problems under varying environmental conditions has 

been successfully studied by Erazo et al. (2019). However, parameter estimation is an inherently 

nonlinear problem and cannot be addressed by standard linear inference techniques like Kalman 

filter. For nonlinear estimation of unknown variables, a recursive estimation method using EKF is 

used. The EKF uses a Taylor series expansion for the functions and has widely been used for civil 

engineering applications involving vibration measurements. Gordon et al. (1993) proposed a 

recursive algorithm that used random samples to represent the PDF. A roughening prior editing 

procedure was used to prevent the truly distinct values from collapsing in the sample. It is evident 

that the results are better when compared with an extended Kalman filter application.  

Wan & van der Merwe (2000) used the Unscented Kalman Filter (UKF) for the nonlinear 

state and parameter estimation. The authors indicated the drawbacks of using EKF. The joint 

parameter estimation and state estimation problems considered in the study revealed that the UKF 

produced better results when compared to the EKF. The approximation of states by a Gaussian 

random variable (GRV) while using an EKF propagates error throughout the nonlinear system. 

This error is averted by the usage of sample points while approximating states by a GRV in the 

UKF approach. Also, the EKF method relies on calculation of a Jacobian matrix and complex 

linearized functions. The UKF incorporates functional nonlinearity of variables and eliminates the 

calculation of a Jacobian matrix. The posterior from the Bayes theorem is directly dependent on 
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likelihood and prior. The UKF approach helps to identify the posterior mean and covariance 

matrices using the true mean and covariance of the GRV generated from the sample points. Wu 

and Smyth (2007) while studying the application of EKF and UKF for real-time identification of 

nonlinear systems showcased that the UKF produced better state estimates and provided better 

identification of parameters of the nonlinear system. This was concluded from the results of EKF 

and UKF implementation on single degree-of-freedom (SDOF) and multi DOF structures with 

hysteresis behavior.  Olivier and Smyth (2017) concluded that the UKF seemed to be efficient for 

identifiable systems and unidentifiable parameters. However, the use of particle filter was 

recommended for locally identifiable systems when sufficient particles were available for the 

approximation.  

Several modifications to the conventional EKF and UKF methods have been done recently. 

A structured black box variational inference method for models with latent time series was 

introduced by Bamler and Mandt (2017). Wan and Nelson (1997) demonstrated the use of dual 

Kalman filters and provided several updates for nonlinear prediction of neural networks. These 

filters are useful to estimate both the states and parameters of the system. Lei et al. (2019) presented 

an updated UKF method for nonlinear identification methods where the input excitation is absent. 

A damped least squares method was used in their approach to interpolate between the Gauss-

Newton algorithm and the method of gradient descent while trying to find the minimum in 

nonlinear optimization problems. The proposed method was validated numerically for a six-story 

hysteretic chain subjected to unknown force excitation. The method successfully identified the 

unknown states and input excitation using the modified approach. Chatzi and Smyth (2009) studied 

a combination of displacement and acceleration data from sensors for degrees of freedom of a 

structure. A Gaussian mixture sigma-point particle filter developed in this study turned out to be 

more robust when compared to the UKF. This was demonstrated with the results from the 

estimation of time invariant model parameters in the nonlinear system. A complex nonlinear UKF 

introduced by Olivier and Smyth (2017) is computationally efficient for posteriors with complex 

distributions. The updated filter was capable to tackle complex Gaussian noise terms. Lund et al. 

(2019) performed a Sobol sensitivity analysis and demonstrated its application by identifying an 

experimental nonlinear energy sink (NES) device. The degree of identifiability was influenced by 

the magnitude of sensitivity and the duration of regions with high sensitivity.  
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The application of UKF in model selection and assessment has been extensively studied 

by several researchers. The Bayesian method of model selection comprises of updating current 

model classes for the prediction of structural response to compare between the available classes of 

the model.  It selects a best fit model from a set of many stochastic models of the device dynamics. 

An online identification scheme for the estimation of states and parameters along with Bayesian 

model assessment was combined by Kontoroupi and Smyth (2017) to provide one unique method 

for the health monitoring of structures. This method was then demonstrated for different hysteretic 

candidate models. Muto and Beck (2008) performed a Bayesian updating and model class selection 

on a Masing hysteretic structural model. The study indicated that the comparisons for different 

model classes should consider the complexity of the model along with the quality of data fit by the 

model. This is in line with Occam’s razor principle that states the model with a simpler 

implementation should be preferred over models with complex implementation if very little 

improvement in data fit is obtained from the more complex model.  A best fit class of models based 

on the largest probability of the model class conditional on data was implemented by Beck and 

Yuen (2004). The Bayesian probabilistic approach used in the study was dependent on the 

evidence of the class of models available from the data. Lund et al. (2020) while demonstrating 

the method for the dentification of a NES device using the UKF and experimental data discovered 

that slight variations in prior distribution of parameters leads to variation in the identified models. 

The sensitivity of training signals for the parameters plays an important role in identifying the most 

appropriate model.  

2.2 Selection of Nonlinear Device 

Experiments aiming to study nonlinear dynamics of structures often require components in 

structures that induce nonlinearity. The goal of the experimental process in this study is to generate 

a rich set of experimental data with known variations in nonlinearity, such that the abilities of the 

Bayesian identification algorithm can be comparatively evaluated on a sufficiently complex case 

study. Nonlinearity in structures is studied through a nonlinear stress versus strain relation (called 

material nonlinearity), through a nonlinear displacement versus strain relation (called geometric 

nonlinearity) or through contact surfaces (via friction, sliding). While it is easy to induce these 

nonlinearities in an experimental structure through different methods (nonlinear springs, NES, 

magnetorheological dampers, etc.), it is imperative to deliberate between these devices for better 
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controllability, repeatability and efficiency. These nonlinear devices can be selected depending 

upon various properties they propagate to the experimental structure.  

With this as the goal, the ideal nonlinear mechanism to produce these effects in an 

experimental structure should be controllable, repeatable, and adequately reactive to the level of 

disturbance in the structure. The controllability provided by such device will play a vital role in 

performing range of experiments over similar models and simulate controlled damage in the 

structure. Repeatability, in this context, suggests a nonlinear device that is resistant to changes in 

its inherent dynamic properties due to dynamic excitations performed on the main structure. 

Depending upon the complexities allowed in modelling of these structures, their equation of 

motion (EOM) play a critical role in this decision. The cost of the devices also plays a major role 

in determining the viability of these devices for each experiment. At the same time the device 

should be capable of producing complexity in the given structure with or without simulation of 

damage.  

As the purpose of this study is not to develop new nonlinear devices, but rather to use them 

to enhance the study of nonlinear identification approach, a candidate device is selected based on 

a review of the literature on nonlinear structural mechanisms. This section systematically considers 

and compares different nonlinear devices in terms of their ease of implementation, complexities 

in their EOM, their cost and controllability. The most suitable device is then tested on an 

experimental structure. The implementation of the device on the experimental structure is 

discussed in Chapter 4.  

A literature review for twelve active, semi-active and passive damping devices revealed 

different ways these devices simulate nonlinearity to the structure. The active and semi-active 

damping devices comprised of a magnetorheological (MR) damper, a bicycle brake, a variable 

friction damper, a semi-active tuned mass damper (STMD) and an electromagnetic friction 

damper. The passive damping devices reviewed in the study comprised of a coupled oscillator, a 

NES, a nonlinear negative magnetic stiffness system (NNMS), a unit cell, a cantilever beam and a 

spring. Though active devices would be more helpful in benchmarking the identification 

techniques, passive devices are simpler to design and build and are therefore considered as 

potential mechanisms. The next two sections identify these active, semi-active and passive devices. 

This is followed by a section on device selection that helps to identify the most appropriate device 

based on some key factors associated with this study. 
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2.2.1 Active and semi-active devices 

A nonlinear system identification for multi-input, multi-output system has been performed 

by Kim et al. (2009). The study comprised of structures equipped with MR dampers. The MR 

damper acts as a semi-active system and holds advantages over traditional active controlled 

systems. A benefit of semi-active devices is that these devices offer adaptability of active control 

devices without any large power sources. The MR dampers continue to act as a passive damping 

system in case of failure of some of its components. The governing differential equations for MR 

damper in this study were based on modified Bouc-Wen model. The MR dampers act nonlinearly 

when used for energy dissipation in structural systems and hence, these controllable devices 

become viable when cost is not a concern. Figure 2.1 shows a schematic of these dampers in a 

high-rise building system. These MR dampers are the best fit if controllable nonlinearity is a 

priority in an experiment.  

Brakes can help in a significant way for inducing nonlinearity in structures. The friction 

force generated by the application of a brake is of nonlinear type. The modelling of frictional forces 

in a brake has been performed by various researchers. Chang and Hu (2016) developed a simplified 

2 DOF model for generating EOM of a brake. The model considered in this study is shown in 

Figure 2.2. The application of the model directly to the current structure depends on the accuracy 

of this simplified model. More complex equations might be required for detailed study of these 

brakes on a structure.  

 

 

 

 

 

 

 

 

  

 

Figure 2.1. MR Damper  
(Kim et al., 2009) 

Figure 2.2. 2 DOF Model of Brake  
(Chang & Hu, 2016) 
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A variable friction damper has been actively used in structural control applications. This 

device has been studied by Nishitani et al. (1999) while discussing a methodology for semi-active 

structural control. The nonlinear friction force is generated in these devices with the help of surface 

friction. The SDOF system considered in this study is shown in Figure 2.3. The use of friction 

dampers is possible for the structure if complexity of equation is not of any concern. In the research 

related to the seismic isolation of buildings from earthquake, Ealangi (2010) studied different 

devices used for seismic isolation. Flat slider bearings and curved slider bearings are some of the 

friction type devices studied in this research.  

A MR damper can be controlled by the motion of hydraulic actuator and provides passive 

damping to the structure. The friction force in a bike brake can be varied by changing the 

application of brake pressure and thereby leading to changing nonlinearity. A variable friction 

damper works on the same principle as a bicycle brake and the force is produced using surface 

friction. Thus, these devices induce controllable nonlinearity in the structure and at the same time 

are repeatable due to their robust equipment over the course of the test. 

The presence of material nonlinearity in STMD has been studied by Karami et al. (2019). 

The nonlinearity is generated when STMD is subjected to strong dynamic excitations. The STMD 

used in this study was developed on the lines of a semi-active independently variable stiffness 

(SAIVS) device. The device consists of four linear springs attached in a rhomboid configuration 

and is shown in Figure 2.4. Variation in stiffness and response of this device becomes feasible by 

changing the angle, 𝜃. Application of such device becomes feasible in areas of structural control. 

The STMD can be used for the current research by installing it directly over the top of the structural 

system.  

Figure 2.3. Variable Friction 
Damper (Nishitani et al., 1999) 

Figure 2.4. Semi-active Tuned 
Mass Damper (Karami et al., 2019) 
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A seismic response study on a multi-story building has been done by Amjadian and 

Agrawal (2019). An electromagnetic friction damper developed for the study was used as a base 

isolator for the building. The device was made of a ferromagnetic plate and two thick rectangular 

ferromagnetic coils arranged in series. These coils were installed on the sides of plate using two 

non-magnetic friction pads. A semi-active controller was then used to control the magnitude of 

force generated from friction between friction pads and ferromagnetic plates. It was studied that 

the arrangement of coils according to the direction of their poles led to an increase or decrease in 

the magnitude of the force. The setup of this device is shown in Figure 2.5. 

2.2.2 Passive devices 

 A two degree-of-freedom system with combined nonlinear stiffness and damping has been 

developed by Andersen et al. (2012) while studying dynamic instabilities in coupled oscillators. 

The generated nonlinearity was induced by geometrically nonlinear damping in the system. The 

Figure 2.5. Electromagnetic Friction Damper (Amjadian & Agrawal, 2019) 
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top small mass in the system was subjected to geometrical nonlinearity due to the vertical 

component of the force acting on it from inclined spring and dampers. Figure 2.6 shows the general 

configuration of this device. The vibration of this device under dynamic excitations cannot be 

controlled. This type of nonlinearity becomes feasible for the current research if controllability is 

not required.  

A NES is a passive device used to absorb generated energy due to vibrations in a structure. 

Starosvetsky and Gendelman (2008) while studying this device compared the nonlinear vibration 

with the best-tuned linear vibration. A NES consists of a small mass with a spring and a damper 

connected to the main system.  In the present case, this NES can be installed on the linear system 

and nonlinearity can be induced by attaching a nonlinear spring to this NES. A NES connected to 

a linear subsystem is shown in Figure 2.7.  

 

Oyelade (2020) developed springs with negative stiffness using repelling magnets. A 

strong and variable nonlinearity is generated by changing the spacing between the magnets. The 

study demonstrates the behavior of these magnets by comparing with Duffing’s equation, an 

equation for approximating cubic nonlinear stiffness. The configuration of this NNMS system is 

shown in Figure 2.8. An advantage of using this system is that no additional mass is attached to 

the main structural system. However, setting magnets at appropriate spacing and non-

controllability propels away from using this system for the current application.  

 

 

 

Figure 2.6. Coupled Oscillator 
(Andersen et al., 2012) 

Figure 2.7. Nonlinear Energy Sink 
(Starosvetsky & Gendelman, 2008) 
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An experimental modal analysis by the extraction of nonlinear normal modes has been 

performed by Peeters et al. (2011). The experimental validation has been performed using a 

cantilever beam with geometrical nonlinearity. Geometric nonlinearity was induced due to 

stiffening of a thin beam attached towards one end of the main beam. The experimental setup was 

excited in a direction parallel to the ground to avoid gravitational effects on the structure. This type 

of nonlinearity can be induced in a structure if it is feasible to change geometry of the structure in 

a direction perpendicular to gravitational force. However, such a type of nonlinearity is not 

controllable. Figure 2.9 shows top view of the experimental setup. The periodic response of this 

system is developed using complex Fourier series.  

A nonlinear energy pumping phenomenon has been studied by McFarland et al. (2005). 

One of the 2 DOF oscillators in this study comprised of a nonlinear spring of cubic nonlinearity 

attached to a NES. The cubic nonlinearity was achieved by transverse vibration at the center of an 

initially unstretched thin rod clamped at both the ends. This method provides a repeatable method 

for inducing nonlinearity in structure. Figure 2.10 shows the schematic of thin rod. The EOM for 

the rod was generated from a Taylor series expansion. The analysis of this system when attached 

to the main structure depends upon the force acting at its center.  

Figure 2.8. Nonlinear Negative Magnetic 
Stiffness System (Oyelade, 2020) 

Figure 2.9. Ductility in Cantilever Beam  
(Peeters et al., 2011) 
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 Bunyan et al. (2018) developed nonlinearity in one-dimensional asymmetric lattice made 

of three cells. The experimental system was made of linearly coupled unit cells where each unit 

cell comprised of series coupling of oscillators. The nonlinearity was induced by strong stiffness 

of each unit cell. A strong cubic nonlinearity was obtained by coupling a large-scale model to an 

ungrounded oscillator of small mass with two parallel steel wires of 0.035 in. Figure 2.11 shows 

reduced order model of the asymmetric lattice. The complex EOM and sensitive wires make this 

system difficult for use in the current research. In addition to the above devices, a break-away 

element can also be considered to simulate nonlinearity in the structure. The break-away element 

is an element designed to be weaker than other elements in the structure and provides 

uncontrollable nonlinearity. 

 

Spencer and Nagarajaiah (2003) reviewed many types of semi active control systems for 

controlling structures against earthquakes and wind loading. Some of the devices studied were 

variable-orifice fluid dampers, tuned liquid dampers, controllable fluid dampers and controllable 

impact dampers. A controllable nonlinearity can be produced by using an electromechanical 

variable-orifice damper. Controllable fluid dampers hold an advantage of reversibly changing their 

viscous fluid from free-flowing linear viscous fluid to a semisolid on an exposure to a magnetic 

field. The models of STMD, variable-stiffness device using SAIVS device has already been 

demonstrated here while the MR Damper was demonstrated in section 2.2.1.    

Figure 2.10. Cubic Nonlinearity using 
Thin Rod (McFarland et al., 2005) 

Figure 2.11. Unit Cell (Bunyan et al., 2018) 
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2.2.3 Device Selection 

Though the key factors in the selection of a device for this experimental study are the 

repeatability and controllability of the device, it will also be beneficial to work with a device whose 

dynamic behavior is relatively simple to understand. The dependence of models on large number 

of parameters and complex EOM makes understanding their behavior difficult. Thus, for an easy 

understanding of the behavior of nonlinear devices, it is important to select models with less 

complex EOM. The literature review reveals that a coupled oscillator, NES, NNMS system, spring 

and unit cells can be studied using simple EOM. However, it should be noted that the resulting 

EOM in case of a spring with thin rod can increase the complexity if it is attached to the main 

structural system. The remaining four devices pose an advantage of strong cubic nonlinearity with 

simple EOM but, are not controllable.  

Although models with simpler EOM are easier to analyze in preliminary step of uncertainty 

quantification, the devices might not be repeatable for experimental phase. Based on the current 

study, a coupled oscillator and a NES consist of a sensitive spring attachment for their effective 

functioning. A spring might be subjected to tensioning before the start of the experiment and the 

usage of a spring with thin rod might not be viable. The unit cells are coupled with a series of 

oscillators and their application is dependent on sensitive steel wires. Therefore, usage of these 

devices on the main structure will lead to less reliable results and the devices might fail in some 

configurations. As the final criteria, the selection of a nonlinear device will be governed by the 

ease of installation of these devices on the main structure.  

The above study for the selection of a nonlinear device reveals that it might not be possible 

to select a device that check marks all the possible factors. Therefore, it is important to assign 

priority to these factors for the selection of a suitable device for the experimental structure. On the 

lines of current goals of the study, a controllable and repeatable nonlinear device with less sensitive 

equipment can be used with complex EOM. Such a device will be helpful for the experimental 

study and its computational model will be based on complex EOM. It shows that a MR damper is 

controllable and repeatable with less sensitive equipment. The analytical studies of this device can 

be done by using EOM from previous studies. Thus, the MR damper (controllable, repeatable and 

complex nonlinearity) is selected for the current study. The properties of the MR damper used for 

further study along with other devices are summarized in Table 1. 
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Table 2.1: Summary of Nonlinear Component Selection 

Sr. 
No. Device Nonlinearity Controllable Cost Installation 

Complexity 

1 MR Damper Complex Yes High Moderate 

2 Variable Friction Damper Complex Yes Moderate Moderate 

3 Break-away Element Simple No Low Easy 

4 Coupled Oscillator Cubic No Moderate Moderate 

5 NES Cubic No Low Easy 

6 NNMS System Cubic No High Difficult 

7 STMD Trigonometric No Very High Difficult 

8 Cantilever Beam Complex No Moderate Moderate 

9 Spring Cubic No Low Easy 

10 Unit Cells Cubic No Moderate Moderate 

11 Brake Complex Yes Moderate Difficult 

12 Electromagnetic Friction 
Damper Complex Yes Moderate Moderate 

 

2.3 Summary 

The findings from the literature review of this chapter can be summarized as: 

• A UKF is commonly used for nonlinear identification and model selection for civil 

engineering structures. (Section 2.1) 

• Bayesian model selection technique selects a best fit model from a set of stochastic 

dynamic models. (Section 2.1) 

• Along with the quality of data fit, the complexity of the model plays an important role in 

selecting the most appropriate model. (Section 2.1) 

• The MR damper has been selected to propagate nonlinearity into the existing structural 

system. (Section 2.2) 

• An MR damper is a controllable and repeatable device that can propagate nonlinearity into 

a structural system. Its modelling is based on complex EOM. (Section 2.2) 
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 NUMERICAL STUDY OF MODEL SELECTION 

3.1 Introduction 

Kalman filters are normally used to approximate properties of linear and nonlinear systems. 

In particular, EKF and UKF are used for systems with nonlinear properties. The algorithms for 

these filters are based on Bayesian filtering equations. For highly nonlinear systems, UKF can 

provide a good approximation of the system states and model parameters. An overview of the 

filtering techniques along with a description of Bayesian filtering equations is given in this chapter. 

The application of the UKF for both parameter and state estimation to a basic SDOF Bouc-Wen 

model is demonstrated in Section 3.5. This study is followed by an explanation of the model 

selection procedure used for the current research in Section 3.6. The procedure is demonstrated by 

performing numerical model selection on three different models of the MR damper in Section 3.8. 

The best model for the MR damper is selected based on both the results of implementing both 

training and validation of the models, and on the specific criteria explained in this section. 

3.2 Bayesian Filtering Equations 

The Bayesian filtering method is used to approximate states of general probabilistic state 

space models that are represented by sequence consisting of conditional probability distributions. 

Consider the general probabilistic state space model for 𝑘 = 1, 2, …., 

 

𝑥L	~	𝑝(𝑥L|𝑥L�g) (3-1) 

𝑦L	~	𝑝(𝑦L|𝑥L) (3-2) 

 

where the state of the system and the measurement from the sensors at time step 𝑡L = 𝑘Δ𝑡 is 

represented by 𝑥L and 𝑦L, respectively. 𝑝(𝑥L|𝑥L�g) is a dynamical model of the system that gives 

information on stochastic dynamics of the system. The distribution of measurements used to 

estimate this information is given by the measurement model, 𝑝(𝑦L|𝑥L). The model follows a 

Markovian property of states which means that the state 𝑥L given 𝑥L�g are independent of the prior 
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states of the system (𝑥L�r, 𝑥L�� … ). Also, the current measurement of the system 𝑦L given the 

state 𝑥L is independent of any past measurements and states.  

The Bayesian filtering equation aims to calculate the marginal posterior distribution of state 

𝑥L at each time step 𝑘 provided the history of measurement is available until time step 𝑘. This term 

can be denoted by 𝑝(𝑥L|𝑦g:L). With an initial distribution 𝑝(𝑥;), the recursive equation for 

Bayesian filtering gives the future distribution of state 𝑥L at the time step 𝑘 by Chapman-

Kolmogorov equation given by, 

 

𝑝(𝑥L|𝑦g:L�g) = 	� 	𝑝(𝑥L|𝑥L�g)	𝑝(𝑥L�g|𝑦g:L�g)	𝑑𝑥L�g. (3-3) 

 

The predicted distribution is then updated from the measurement of the system 𝑦L at time 

step 𝑘. The posterior distribution for state 𝑥L is calculated using Bayes’ theorem. This equation is 

given by, 

𝑝(𝑥L|𝑦g:L) = 	
𝑝(𝑦L|𝑥L)	𝑝(𝑥L|𝑦g:L�g)

∫ 	𝑝(𝑦L|𝑥L)	𝑝(𝑥L|𝑦g:L�g)	𝑑𝑥L
. (3-4) 

3.3 Kalman Filter 

A Kalman filter is widely used to predict the linear behavior of a system. It gives a closed 

form solution for linear Gaussian problems comprising of Bayesian filtering equations. The filter 

assumes a Gaussian distribution with zero mean and follows a two-step recursive process. The first 

step is called the prediction step and the second step is called the update step.  In the prediction 

step, the filter predicts the states of the system. It considers the noise in the system in order to 

account for any uncertainties. The predicted states are then corrected using the measurements from 

the system in the next step. The correction for the predicted states is based on an average of weights 

in the system. The predicted system state with a lower uncertainty is assigned a higher weight. A 

Kalman filter in its basic form cannot be used for systems exhibiting nonlinearities in either states 

or measurement and hence, its use is only limited to systems exhibiting linear behavior. 
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3.4 Extended Kalman Filter 

An EKF has been developed to address the limitations of using a Kalman filter. These 

limitations have been indicated in Section 2.1. The EKF uses Taylor series expansion to 

approximate a nonlinear behavior by the linear approach. It provides results based on first-order 

approximations. The optimal state predictions in this approach are dependent on prior mean of the 

estimates. The nonlinear dynamic equations 𝑥L�g and 𝑦L  are linearized as  𝑥L�g ≈ 𝐴g𝑥L + 𝐴rvL 

and 𝑦L ≈ 𝐴�𝑥L + 𝐴�nL. The posterior covariance matrices are then calculated for the linear 

system. However, the approximation made by EKF may sometimes propagate errors in the true 

posterior mean and covariance of the transformed GRV. In addition, the EKF does not put 

constraints on the estimations of states. As a result, the estimations are sometimes obtained outside 

the domain defined for the states. Ungarala et al. (2007) presented a constrained EKF (CEKF) 

algorithm for putting linear constraints on the states. The use of CEKF for parameter identification 

was further demonstrated by Li and Wang (2021). It is inferred that the identification by CEKF 

gives better estimation than the conventional EKF. The CEKF makes sure that the parameter and 

state values lie in the physical domain. However, the CEKF still needs a differentiable system for 

the algorithm to work. As a result, the use of CEKF for non-differentiable systems becomes 

difficult. In addition, the comparison of the CEKF with the UKF algorithm for differentiable 

systems is yet to be studied.  

3.5 Unscented Kalman Filter 

A UKF uses the unscented transform (UT) to calculate a true posterior mean and covariance 

of a system to an accuracy of 3rd order Taylor series expansion (Wan & van der Merwe, 2000). 

Like the other two filters described above, it also uses a GRV to represent the state distribution of 

the system. However, for the UKF, the GRV is now specified using a set of deterministic sample 

points known as sigma points. The sigma points completely capture the true mean and covariance 

of the GRV. These sigma points are then propagated through the nonlinear system and the mean 

and covariance of the nonlinear system are calculated based on certain weights. The UKF also 

approximates the states for a system with non-Gaussian inputs, however, the accuracy for such 

systems depend on the value of parameters of the UKF. The approximations are accurate to at least 

second-order and become more accurate depending upon the values of the parameters chosen. 
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Figure 3.1 shows a comparison of predicted states by an EKF and a UKF. It is evident that the 

UKF approximations predict the behavior of the system more closely to the true mean and 

covariance (Wan & van der Merwe, 2000). A comparison of the three nonlinear algorithms based 

on different aspects is made in Table 3.1. The superiority of the UKF is evident due to its inherent 

property of estimating highly nonlinear differentiable systems without the requirement of partial 

derivatives. Although the UKF is the slowest of the three algorithms, the advantages mentioned 

here make it the best overall choice for the current nonlinear identification study. 

 
Table 3.1. Summary of Nonlinear Algorithms 

Type EKF Constrained EKF UKF 

Operation Principle Linearization Linearization Unscented transform 

Accuracy Low Medium High 

Partial Derivatives Required Required Not required 

Speed Fastest Slightly slower Slowest 

Application Nonlinear Constrained 
nonlinear problems Highly nonlinear 

Figure 3.1. Comparison of Approximations 
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3.5.1 UKF Equations 

Let a nonlinear continuous state-space equation and measurement equation of a general 

dynamic system be represented by, 

 

�̇� = 𝐟(𝐗(𝑡), 𝐮(𝑡),𝐰(𝑡)) (3-5) 

𝐘(𝑡) = 𝐡(𝐗(𝑡), 𝐯(𝑡)) (3-6) 

 

where, the known input of the system is represented by 𝐮(𝑡), the process noise vector in the system 

is represented by 𝐰(𝑡)	and the measurement noise is given by 𝐯(𝑡). The discretized forms of 

Equations 3-5 and 3-6 are  

 

𝐗L�g = 𝐅(𝐗L, 𝐮L,𝐰L) (3-7) 

𝐘L = 𝐇(𝐗L, 𝐯L). (3-8) 

 

Equations 3-7 and 3-8 give the discrete nonlinear difference state space equation. In the equation, 

the discrete process noise is represented by wL	~	𝑁(0, 𝑸L) and is kept as a Gaussian white noise 

having mean equal to zero and covariance matrix equal to Q. The measurement noise which is 

again assumed to be Gaussian white noise with mean equal to zero and covariance matrix equal to 

R is represented as vL	~	𝑁(0, 𝑹L). For a time-step ∆𝑡 belonging to the sampling time, Equation 3-

5 can be used to calculate the following function F as,  

 

𝐅(𝐗L, 𝐮L,𝐰L) = 	𝐗L +	� 𝐟(𝐗(𝑡), 𝐮(𝑡),𝐰(𝑡))d𝑡.
(L�g)∆5

L∆5
 (3-9) 

 

The solution to the above Equation 3-9 can be calculated by numerical approximation method like 

the fourth-order Runge-Kutta method, also known as the ‘classic Runge-Kutta method’.  In this 

method, the solution at time step (𝑘 + 1)∆𝑡 is found using the value available at the time step 𝑘∆𝑡 

and the average of the weights of four increments. These increments are calculated using the 

product of the increment time interval, ∆𝑡 and the approximate slope of the function at the current 
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time step, at half of the time step ∆𝑡 and at the time step ∆𝑡. The local truncation error in the fourth-

order Runge-Kutta method is of the order 𝑂(ℎ�) and the total accumulated error is of the order 

𝑂(ℎ�). In order to use the UKF algorithm for state and parameter estimation, we first concatenate 

the state vector to the original state vector and the noise variables. This equation is given by,  

 

𝐗L# = 	 [𝐗L�	𝐰L
�	𝐯L�]�. (3-10) 

 

The algorithm starts with the initialization step as, 

 

𝐗a; = 𝐸[𝐗;] (3-11) 

𝐏; = 𝐸 ��𝐗; −	𝐗a;��𝐗; −	𝐗a;�
�� (3-12) 

𝐗a;# = 𝐸[𝐗#] = 	 [𝐗a;�	𝟎	𝟎]� (3-13) 

𝐏;# = 𝐸 ��𝐗;# −	𝐗a;#��𝐗;# −	𝐗a;#�
�� = �

𝐏𝟎 𝟎 𝟎
𝟎 𝐐 𝟎
𝟎 𝟎 𝐑

 . (3-14) 

 

The sigma points are calculated at time step 𝑘 for 𝑘	 ∈ {1, 2…∞} as, 

 

𝖃L�g|L𝐗 = 	 ¦(𝐗a𝒌𝒂)		©𝐗a𝒌𝒂 	+	ª(𝐿 + 𝜆)𝐏𝒌𝒂	¬	©	𝐗a𝒌
𝒂 −	ª(𝐿 + 𝜆)𝐏𝒌𝒂	¬	. (3-15) 

 

The scaling parameter 𝜆 in the Equation 3-15 is given by, 

 

𝜆 = 	𝛼hr(𝑙$ + 	𝜅) − 𝑙$ (3-16) 

 

where, the augmented state vector 𝐗# has the dimension 𝐿 and the original state vector 𝐗 has the 

dimension 𝑙$. The spread of sigma points around 𝐗aL# is given by 𝛼h. The value of 𝛼h is normally 

set to a small positive number ranging between 0 and 1. The secondary scaling parameter 𝜅 in the 

Equation 3-16 is set to (3 − 𝑙$). For the current nonlinear identification study, the value of 𝛼h is 

set as 0.0001 and the value of 𝜅 is set to 0. After the calculation of sigma points from Equation 3-
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15, the prediction for the state vector 𝐗aL�g�  and the prediction for the covariance matrix 𝐏L�g�  is 

made in the time update step. These equations are given by,  

 

𝖃L�g|L𝐗 = 	𝐅(𝖃L𝐗, 𝐮L, 𝖃L𝐰) (3-17) 

𝐗aL�g� = 	¯𝑊]
(")

r°

]±	;

𝖃],L�g|L𝐗  (3-18) 

𝐏L�g� = 	¯𝑊]
(^)

r°

]±	;

²𝖃],L�g|L𝐗 −	𝐗aL�g� ³²𝖃],L�g|L𝐗 −	𝐗aL�g� ³�. (3-19) 

 

The time update step also calculates the prediction for the measurement vector 𝐘aL�g�  and its 

covariance matrix 𝐏L�g´´ . These equations are given by, 

 

𝔂L�g|L 	= 	𝐇	(𝖃],L�g|L𝐗 , 𝖃L𝐯) (3-20) 

𝐘aL�g� = 	¯𝑊]
(")

r°

]±	;

𝔂],L�g|L (3-21) 

𝐏L�g´´ = 	¯𝑊]
(^)

r°

]±	;

²𝔂],L�g|L −	𝐘aL�g� ³²𝔂],L�g|L −	𝐘aL�g� ³�. (3-22) 

 

The weights for the mean and covariance matrices in the above equations are  𝑊]
(") and 𝑊]

(^). 

These weights are calculated as,  

 

𝑊;
(") = 	

𝜆
𝑙$ + 	𝜆

 (3-23) 

𝑊;
(^) = 	

𝜆
𝑙$ + 	𝜆

+ (1 − 𝛼hr +	𝛽h) (3-24) 

𝑊]
(") = 	𝑊]

(^) = 	
1

2(𝑙$ + 	𝜆)
, 𝑖 = 1,… , 2𝑙$. (3-25) 
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The higher order effects and the prior knowledge of the system in above equations is considered 

by 𝛽h in Equation 3-24. The 𝛽h is added to the weight of zeroth sigma point. The value of 𝛽h is 

set to 2 for optimal solutions from Gaussian distribution and hence, has been set to this value for 

the current nonlinear identification study. The time update step is followed by the measurement 

step and is given by,  

 

𝐏L�g·´ = 	¯𝑊]
(^)

r°

]±	;

²𝖃],L�g|L𝐗 −	𝐗aL�g� ³²𝔂],L�g|L −	𝐘aL�g� ³� (3-26) 

𝓚L�g 	= 	𝐏L�g·´ 	(𝐏L�g´´ )�g (3-27) 

𝐗aL�g = 	𝐗aL�g� +	𝓚L�g(𝐘L�g −	𝐘aL�g� ) (3-28) 

𝐏L�g = 	𝐏L�g� −	𝓚L�g𝐏L�g´´ 	𝓚L�g
�  (3-29) 

where,   

𝖃# = 	 [(𝖃𝐗)�	(𝖃𝐰)�	(𝖃𝐯)�]�. (3-30) 

 

The above UKF algorithm can be explained using Figure 3.2.  The filter starts with the 

initialization step as indicated in step (i). The mean for the prior distribution on the states is kept 

as 𝐗a; and the covariance is set as 𝐏;.  The distribution of states is shown by the generation of 

sigma points in step (ii). The sigma points are then transformed to the nonlinear model in step (iii) 

to predict the future state, 𝑝(𝑥L|𝑦g:L�g). This prediction on the future distribution of states is made 

using the prior information from the system and the measurement. In step (iv), the distribution of 

the estimated measurement is made by using the predicted future state distribution in the system 

observation function. The predicted distribution is then compared with the true measured response 

of the system in step (v) and the corrected distribution of states, 𝑝(𝑥L|𝑦g:L) is calculated. The UKF 

thus uses the prediction and correction algorithm and proceeds to the next time step and finally 

predicts the system states and measurements at time step 𝑁.  
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3.5.2 System State and Parameter Identification using UKF 

The application of UKF for system state and parameter identification can be demonstrated 

with a computational Bouc-Wen model. This example will serve as a basis for developing the 

model selection process described in Section 3.6. A nonlinear Bouc-Wen model of hysteresis is a 

most commonly used model to represent hysteretic response in a system. A MR damper exhibits 

a hysteresis behavior for the force and displacement and hence, it can be represented using a Bouc-

Wen model. A SDOF mechanical model of the MR Damper represented by nonlinear Bouc-Wen 

model is shown in Figure 3.3. The EOM of the SDOF model represented in Figure 3.3 is given by,  

 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) + 𝑘𝑟(𝑡) = 	−𝑚�̈�¹(𝑡) (3-31) 

 

Figure 3.2. Procedure for the UKF algorithm 
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where, 𝑚 is the mass of the system, 𝑐 is the damping and 𝑘 is the stiffness in the system. The 

displacement, velocity and acceleration at time 𝑡 are given by 𝑥(𝑡), �̇�(𝑡) and �̈�(𝑡). The hysteretic 

component in the Bouc-Wen model is represented by 𝑟(𝑡). The relation of �̇�(𝑡) with other 

parameters is given by,  

 

�̇� = 	 �̇� − 𝛽g|�̇�||𝑟|&�g𝑟 − 𝛾�̇�|𝑟|&. (3-32) 

The system parameters are set at values 𝑚 = 0.2, 𝑐 = 0.3, 𝑘 = 9, 𝛽g = 2, 𝛾 = 1, and 𝑛 = 2. An 

El-Centro earthquake signal at a sampling frequency of 50 Hz is used for the state and parameter 

estimation of this SDOF Bouc-Wen model. The input signal is shown in Figure 3.4. The 

augmented state vector for the UKF identification calculated from Equation 3-31 is represented 

as,  

 

𝑋 = 	 [𝑥, �̇�, 𝑟, 𝑐, 𝑘, 𝛽g, 𝛾, 𝑛]¼. (3-33) 

 

The state space representation of the system is developed from Equations 3-31 and 3-32. It is given 

by,  

�̇� = 	𝑓(𝐗(𝑡), 𝐮(𝑡)) (3-34) 

where, 

 

Figure 3.3. Mechanical Model of the Shear Mode MR Damper 

m 



 
 

42 

𝑓�𝑋(𝑡), 𝑢(𝑡)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

�̇�
−�̈�¹ − (𝑐�̇� + 𝑘𝑟 + 𝑘𝑥)/𝑚
�̇� − 𝛽g|�̇�||𝑟|&�g𝑟 − 𝛾�̇�|𝑟|&

0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (3-35) 

 

The observation equation based on the measured acceleration response and excitation signal can 

be given by,  

 

𝑦d = 	 �̈� + �̈�¹ + v = 	−
(^$̇�LB	)

Ä
+ v. (3-36) 

 The UKF algorithm described in Section 3.5.1 starts for the Bouc-Wen model by taking 

the initial estimates at the mean of the system parameters. In order to replicate the true system 

response to the experimental signal, a random, band-limited white noise (BLWN) with the root 

mean square (RMS) value set at 1%, 2% and 5% is used. This noise is imposed on the displacement 

and acceleration measurements generated from the response of the computational model without 

noise. In addition, the noise is also added to the input earthquake signal. The noise in the 

displacement and acceleration response is due to the inherent sensor measurement error and is 

called measurement noise. The noise in the input signal is due to the actual actuator performance 

Figure 3.4. El-Centro Earthquake Input Signal 
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and is called process noise. The process and measurement noise can vary and are usually not equal. 

However, for the current example, these values are set equal.  

The estimated system response for the displacement, velocity and acceleration using the 

UKF algorithm is shown in Figure 3.5. These estimations are compared with the simulated system 

response at the true value of the parameters. It is observed that the UKF is capable of estimating 

the true state of the system with a very high accuracy. When the Bouc-Wen system starts showing 

hysteretic behavior, the contribution of the hysteretic component towards the total resisting force 

in the system increases. Figure 3.6 shows the contribution of viscous force, elastic force and 

hysteretic force towards the total force in the system. This figure shows a considerable amount of 

hysteretic contribution and confirms the presence of hysteresis in the system. The estimated 

hysteresis loop of the Bouc-Wen system is compared with the simulated case in Figure 3.7. The 

UKF estimation for the hysteretic response is close to the true hysteretic response of the 

computational model. It should be noted that the system parameters and the response are unitless. 

This example demonstrates the UKF implementation on a non-physical model. The more realistic 

values of the model and the system parameters will be taken for the numerical model selection 

process performed in Section 3.8 and the experimental model selection performed in Chapter 5. 

The convergence history of the parameters over the length of the input signal is shown in Figure 

3.8. It is observed that the UKF converges towards the correct value of the parameters between 5 

and 10 seconds. The input signal excites the structure at around 5 seconds and the parameters 

converge in the first 5 seconds of the excitations. The parameter estimations then remain near the 

true value and correct towards the true value for the remaining part of the excitation. The final 

estimation of the five parameters at the end of the input signal is compared with their true value in 

Table 3.2. An error for each of the parameter estimation is calculated by the difference between 

the exact value and the final estimated value of these parameters. This error is shown in Table 3.2 

in terms of the percentage relative to the true value of the parameters.  

The sensitivity of the UKF estimation results to different noise levels is studied by 

introducing both a 2% and a 5% RMS random, band-limited white noise. Again, the noise levels 

are introduced for both process and measurement and the UKF system state and parameter 

estimation is studied. Figures 3.9 and 3.10 show the comparison of state estimates and hysteresis 

loops using UKF for a noise level of 2% RMS. The comparison of state estimates and hysteresis 

loops using UKF for a noise level of 5% is shown in Figures 3.11 and 3.12, respectively. Figures 
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3.13 and 3.14 show the convergence history of parameters for noise levels of 2% and 5% RMS, 

respectively. It is again observed that the parameters come towards the true value during initial 5 

seconds of the input and then converge towards the true value for the rest of the signal input. The 

state estimation and hysteresis loops tend to fall slightly away from the true response as the RMS 

noise level increases. This finding is evident from the figures for 1%, 2% and 5% noise levels. The 

comparison of error in parameter estimation from Table 3.2 shows that the estimation is more 

accurate for lower level of RMS noise. However, due to its approximation, the UKF might 

sometime show more error in parameter estimation for lesser level of RMS noise. This finding is 

evident from the error in estimation of 𝛽g for RMS noise levels of 1%, 2% and 5%. The error 

decreases as the noise level increases. This behavior is in contrast to what is expected from the 

parameter estimation. This behavior is mostly attributed to the fact the UKF approximates 

Figure 3.5. Comparison of State Estimates for Non-Physical Model using UKF at a 
Noise of 1% RMS 
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parameters only to a certain degree (third order Taylor series expansion in this case). Any error in 

estimation of parameters that is less than 5% should be considered as a good result. For the current 

scenario, the error was over 5% only for 𝛾 at RMS noise level of 5%, while it was less than 5% 

for the rest of the parameters.   

 

Figure 3.6. Contribution Towards Total Force for the Non-Physical Model 

Figure 3.7. Comparison of Hysteresis Loops for Non-Physical Model 
using UKF at a Noise of 1% RMS 
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Figure 3.8. Convergence History of Parameters for Non-Physical Model using UKF 
at a Noise of 1% RMS 

1 
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Figure 3.9. Comparison of State Estimates for Non-Physical Model using UKF at a 
Noise of 2% RMS 

Figure 3.10. Comparison of Hysteresis Loops for Non-
Physical Model using UKF at a Noise of 2% RMS 
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Figure 3.11. Comparison of State Estimates for Non-Physical Model using UKF at 
a Noise of 5% RMS 

Figure 3.12. Comparison of Hysteresis Loops for Non-
Physical Model using UKF at a Noise of 5% RMS 
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Figure 3.13. Convergence History of Parameters for Non-Physical Model using UKF 
at a Noise of 2% RMS 

1 
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Figure 3.14. Convergence History of Parameters for Non-Physical Model using UKF 
at a Noise of 5% RMS 

1 
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Table 3.2. Parameter Estimation for SDOF Bouc-Wen Model using UKF 

Process and 
Measurement Noise  𝒄 𝒌 𝜷𝟏 𝜸 𝒏 

 Exact value 0.3 9 2 1 2 

1% Estimated Value 0.3008 8.9979 2.0407 1.0423 2.0423 
% Error 0.2637 0.0232 2.0343 4.2285 2.1157 

2% Estimated Value 0.3005 8.9942 2.0623 1.0418 2.0607 
% Error 0.1752 0.0643 3.1143 4.1787 3.0365 

5% Estimated Value 0.2992 8.9831 2.0076 0.9461 2.0250 
% Error 0.2795 0.1880 0.3788 5.3894 1.2523 

 

The stability of the UKF algorithm in estimating the states and parameters also plays a 

major role in the current model selection study. The UKF algorithm sometimes fails to run due to 

a lack of convergence of the covariance matrix in the calculation. The stability of the algorithm 

not only depends on the choice of the UKF parameters (𝛼h, 𝜅 and 𝛽h) but also depends on the level 

of RMS noise, initial state estimations, input signal and the structural and model parameters. The 

algorithm is stable for high levels of process and measurement noise, but the stability of the 

simulation increases as these noise level decrease. The El-Centro input signal used for this example 

was rich enough at an input excitation of 50 times the original signal. The structural and the Bouc-

Wen model parameters seem to converge well for this input signal while performing UKF 

identification. The algorithm gave higher errors for parameter estimation when an input signal like 

‘frequency sweep up and down’ was used. The algorithm was also tried for an amplitude sweep 

and sine wave signal and good approximations were achieved for a slight variation in structural 

properties. The natural frequency of the structure was also varied by changing the value of the 

stiffness parameter, 𝑘. It was found that these signals helped in getting good estimates from the 

UKF algorithm when the sampling frequency of these signals was set around 2000 Hz.  

The initial estimation on parameters should be near the mean. Using initial estimates too 

far away from the mean can sometimes cause the parameter estimations to diverge from their true 

values. A good rule of thumb is to keep these initial estimations on parameters within one standard 

deviation away from the mean. In addition, the UKF considers the parameters to lie in open domain 

from −∞ to +∞. This consideration might sometimes lead to the final estimation values falling in 

the negative domain. Since the parameters considered for the current nonlinear identification study 

lie in the positive domain, negative parameter estimates tend to yield incorrect and illogical output 
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from the UKF algorithm. The problem of estimations from negative domain can be solved by 

taking a logarithm (to the base 𝑒) on initial parameter estimations (Lund et al., 2020). The 

parameters are then converted back to the original estimated values by taking an exponent of the 

final parameters. Thus, a final parameter estimate in positive domain is obtained.  

Although the initial logarithms solve the problem of having negative parameter 

estimations, initial parameter values that are less than 1 or higher than 100 might lead to 

convergence issues in the UKF algorithm. First, the magnitudes of all parameters are to be set at 

relatively same level for a quicker convergence to true values. The logarithm for values less than 

1 gives a negative value, for a value equal to 1 gives zero and for a value greater than 100 gives a 

value greater than 2. In all these cases, the UKF fails to converge sometimes. As a result, the initial 

parameter estimates are first converted to a suitable value between 1 and 100 by dividing or 

multiplying them by values in the order of 10. In the next step, a logarithm of these values is taken. 

After the UKF algorithm ends, these values are again converted to the original form by taking an 

exponent to the power of parameters and then multiplying or dividing by the corresponding values 

by which the parameters were divided or multiplied before. The approach of dividing or 

multiplying and taking logarithm is further explained through Equations (3-37) and (3-38). The 𝑖 

in the subscript of parameters represents an initial estimated value, and the 𝑓 in the subscript of 

parameters represents the final estimated value of the UKF algorithm.  

 

𝑋Ê; = [𝑥, �̇�, 𝑟, log>(𝑐] ∗ 10) , log>(𝑘] ∗ 1) , log>�𝛽g] ∗ 1� , log>(𝛾] ∗ 10) , log>(𝑛] ∗ 1)]
¼ (3-37) 

𝑋ÊL = Ï𝑥, �̇�, 𝑟,
(𝑒^Ð)
10 ,

(𝑒LÐ)
1 ,

(𝑒ÑÐ)
1 ,

(𝑒ÒÐ)
10 ,

(𝑒&Ð)
1 Ó. (3-38) 

 

The damping coefficient, 𝑐 and the stiffness, 𝑘 represent the structural parameters of the 

system. The UKF estimates for these parameters is very close to their true value. The estimates for 

the Bouc-Wen parameters, 𝛽g, 𝛾 and 𝑛 do not converge as well as do the structural parameters 𝑐 

and 𝑘. This behavior can be attributed to the fact that the Bouc-Wen model parameters are very 

sensitive to the slightest change in the structural system and its response. Still the Bouc-Wen 

parameters converge very closely to the true values. This finding confirms the efficacy of the UKF 

for parameter estimation for highly sensitive models.  
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3.6 Model Selection, Training and Validation 

Model selection for the current nonlinear identification study is performed after the system 

state and parameter estimation with the UKF as described in Section 3.5. This approach is also 

known as state augmentation. The computational models of MR damper used for the study contain 

parameters in the positive domain. Therefore, the UKF estimates for all parameters is restricted to 

the positive domain by taking a logarithm of each parameter as indicated in Equation 3-37. The 

multiplication/division constant for each parameter varies depending upon the model. Thus, the 

transformed parameters will have values between 1 and 100 before taking their logarithms. The 

transformation still enforces the unconstrained optimization on parameters and the UKF algorithm 

runs without any errors. The augmented state vector generally consists of the structural damping 

coefficient, stiffness coefficient, hysteretic component, and the damper parameters. This form of 

augmented state vector is thus similar to Equation 3.33 and is given as, 

 

𝑋Ê; = 	 [𝑥g, 𝑥r, 𝑥�, 𝑥�, 𝑥�, 𝑥Ô, 𝑥Õ, 𝑥Ö]¼. (3-39) 

 

In the experimental setup discussed later in this thesis, the process noise is quantified using the 

measurements obtained from both the accelerometer installed on the shake table and the 

displacement sensor and accelerometer installed on the first floor. It is assumed that the 

measurement noise from the displacement sensor and accelerometers are independent of each 

other.  

The identification of the states and parameters starts with the selection of an excitation signal 

that is able to generate a dynamic response in the system. The response should be capable of 

generating an excitation in all components of the structural system. The UKF algorithm is capable 

of identifying the states and parameters of the structural system if these conditions are met. The 

response of the structure and further excitation of the parameters is usually studied by an analytical 

approach known as identifiability analysis. This analysis helps to study the response of the 

structure under various input signals and identifies a set of input signals for which the parameters 

show a moderate to high excitation. Once the excitation signals are determined, the UKF 

identification algorithm is used to generate a set of models depending upon the prior distribution 

of the parameters. This step is known as training. The generated models are then used to predict 

system response under an input signal and the model with least error is selected. This step is known 
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as validation. Thus, the model selection process comprised of training and validation of models 

for a set of input signals and the selection of a model with the least error. The training and 

validation steps are further described in Sections 3.6.1 and 3.6.2.  

3.6.1 Model Training 

In the model training step, a number of models are generated using an input signal and the 

UKF algorithm. The UKF identification algorithm starts with a prior assumption on the 

parameters. The prior distribution on parameters plays a major role in determining the stability of 

the algorithm. Although the algorithm is stable and yields converging results for a set of prior 

distribution on parameters, it might be unstable and fail sometimes due to some badly conditioned 

matrices. While it is relatively easy to set a suitable prior distribution that will produce converging 

results for the numerical setup, it will be more difficult to predict this distribution for the 

experimental setup where the response and system states are related to parameters. To avoid 

difficulties in the experiment, a set of prior distributions is pre-selected and the algorithm is 

implemented for each sampled distribution in the set. The models are generated for each 

distribution for which the algorithm is sensitive. The initial mean and covariance matrices are 

given by, 

 

𝜇; = [𝜇;
($)	𝜇;

(×)]¼ (3-40) 

𝑃; = �
𝑃;
($) 0
0 𝑃;

(×) . (3-41) 

 

In the above equations, the initial mean on the states is given by 𝜇;
($) and the initial mean on the 

parameters is given by 𝜇;
(×). The covariance matrix is a diagonal matrix consisting of covariance 

distribution on states and parameters. The states and parameters are assumed to be independent of 

each other and hence, the resulting covariance matrix contains only non-zero diagonal terms.  

 The set of prior distributions for the parameters is generated using a Latin hypercube 

sampling approach (LHS). This approach is useful for generating a set of random values of 

parameters in a multi-dimension parameter distribution. The LHS samples generally help to 

converge to the true value of parameters quicker than would normally distributed parameters. The 
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advantage of the LHS sampling is that each parameter value is selected such that the value is 

unique in the axis-aligned hyperplane containing it. This method can be further explained by an 

example selecting 10 random values within the range 0−10. The LHS samples are generated such 

that each value will be selected from each of the ten hyperplane axes (0−1, 1−2, ⋯ 9−10). In the 

current study, the LHS samples of the model parameters are generated within a plausible range for 

each parameter. The plausible range of each parameter for MR damper models is determined by 

studying the response of the system under different parameter values under a known input signal. 

The initial covariance estimates on the parameters are assigned in the following way,  

 

𝜎s = 	𝜏(𝜇;)s, (3-42) 

𝜏	 ∈ {0.1, 1,10, 25, 50, 75, 100, 200, 300, 600}%. (3-43) 

 

The coefficient 𝑗 in Equation 3-42 starts from 4 and goes until parameters in the MR damper model 

are included. The covariance estimate in Equation 3-42 consists of an index of dispersion, 𝜏. The 

index of dispersion is the ratio of the variance to the mean. The UKF algorithm is implemented for 

each index of dispersion on covariance samples and converging results are obtained for some 

indices of dispersion. The covariance level on each parameter is increased simultaneously and thus 

the algorithm is iterated over all the values. In total, the UKF algorithm is implemented 100 times 

generating 100 different models in the training step. The 100 iterations are a result of 10 sets of 

LHSs and 10 samples of the indices of dispersion on covariance samples for each LHS 

[10	(𝐿𝐻𝑆)	x	10	(𝛼) = 100	iterations].  

3.6.2 Model Validation 

In the model validation step, the trained models with all sets of parameter values are used 

to generate a structural response under an input validation signal that is different than the training 

signal. The computed system states using the identified model parameters are then compared with 

the actual structural response for this validation signal. A suitable model is then selected from a 

set of 100 models by comparing the mean square error (MSE). The MSE is computed using the 

predicted displacement and accelerations values with the actual structural response for the 

validation signal. The equation for MSE is given by, 
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𝑀𝑆𝐸 = 	
100
𝑁 ¯ä

(𝑥] −	𝑥å])r

𝜎=r
+
(�̈�] −	 �̈�Ê])r

𝜎#r
æ

ç

]±g

 (3-44) 

 

where the total number of observation values from the actual structural response for the validation 

signal is given by 𝑍. The value of 𝑍 can be calculated by multiplying the total input time of the 

signal to the sampling frequency. In general, it is the size of the one-dimensional input matrix in 

MATLAB. The observed actual structural displacement for the validation signal at the 𝑖th time step 

is given by 𝑥] and the computed displacement under same input signal generated by the simulation 

of the model is given by 𝑥å]. Similarly, the observed actual structural acceleration for the validation 

signal is given by �̈�] and the computational acceleration from simulation of the model is given by 

�̈�Ê]. 𝜎=r and 𝜎#r in the above equations are variances in the displacement and acceleration noise, 

respectively.  

 In addition to the MSE mentioned above, the relative quality of the trained models can also 

be assessed using the difference in the error between the predicted and measured value of force 

(Spencer et al., 1996). These error values are calculated with respect to the time, displacement and 

velocity of the measured response. The expressions defining the three error values used are given 

as, 

 

𝐸5 = 	
𝜀5
𝜎J
, 														𝐸$ = 	

𝜀$
𝜎J
, 														𝐸$̇ = 	

𝜀$̇
𝜎J

 (3-45) 

where  

𝜀5r = 	
1
𝑁¯(𝑓>$?] −	𝑓?B>] )r

è

]±g

 (3-46) 

𝜀$r = 	
1
𝑁¯(𝑓>$?] −	𝑓?B>] )r|�̇�]|

è

]±g

 (3-47) 

𝜀$̇r = 	
1
𝑁¯(𝑓>$?] −	𝑓?B>] )r|�̈�]|

è

]±g

 (3-48) 

𝜎Jr = 	
1
𝑁¯(𝑓>$?] −	𝜇o] )r.

è

]±g

 (3-49) 
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The actual observed value of force at 𝑖th time step is given by 𝑓>$?]  and the predicted computational 

force is given by 𝑓?B>] . The measured velocity and acceleration are given by �̇�] and �̈�]. The mean 

of measured force values at 𝑖th time step is given by 𝜇o] . The behavior of MR damper models for 

the current study is compared using only using force-displacement hysteresis loops. Therefore, it 

is prudent to compare the relative quality of models on the basis of Equations 3-46 and 3-47. The 

final MR damper is then selected after comparing the MSE and force errors with respect to time 

and displacement for each model. 

3.6.3 Identification and Validation Methods 

 The model training and validation described in Sections 3.6.1 and 3.6.2 may be 

implemented using various methods. These methods differ from each other by the type and order 

of the input signals used in the training and validation. Lund et al., (2020) demonstrated three 

different methods to perform model training and validation. The first step before the 

implementation of these methods is to select an appropriate input signal that excites the parameters 

of the model. The authors identified two such input signals that excited the parameters of the NES 

model. Method 1 for identification and validation consists of using each of the two input signals 

individually and training models with prior distribution on the parameters. This step is then 

followed by a validation step where the trained parameters of the model are validated using the 

same input signal that was used in training. In method 2, the models are trained using one of the 

two signals and the trained parameters of the model are then validated using the other signal as an 

input. This method is also known as cross-validation. In method 3, the models are trained 

simultaneously with two input signals and the trained parameters of the candidate models are 

validated simultaneously using both input signals. In order to use both signals simultaneously in 

the training and validation steps, the state space vector, the base function for the transition function 

and the observation equation are updated to take inputs from both signals. The MSE and force 

error is calculated for each of the candidate models after the validation step in each of the three 

methods and the model with the least MSE is selected.  

 The training and validation approach followed in method 1 sometimes overfits the 

candidate models due to high sensitivity of input signals on a small variation in parameters (Lund 

et al., 2020). In order to get best estimation of the model used in the experimental response, it is 
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important to avoid overfitting. Overfitted models tend to give good response for the input signal 

that was used for training. However, the response of these models with other input signals usually 

generates high errors. It was predicted that the implementation of using two signals simultaneously 

in method 3 can tackle this issue. However, the authors found that simultaneously using two signals 

in method 3 overfitted the model towards the signal that was more sensitive to a small variation in 

parameters. The cross-validation in method 2 prevented the overfitting of models and the final 

validated models comprised of the lowest MSE. Therefore, the current nonlinear identification 

study will demonstrate model selection using methods 1 and 2. It is believed that the results of 

method 3 will overfit models towards one signal like in method 1 and will not provide better results 

when compared to methods 1 and 2 (Lund et al., 2020).  

 Methods 1 and 2 are selected for the nonlinear identification study here, and are further 

explained in Figure 3.15. A particular mechanical model form for the MR damper is chosen and 

the training and validation is performed using both methods. The model training phase starts with 

the UKF identification algorithm with 100 prior distribution on the parameters. The trained models 

are then validated with the same signal as used in training phase in method 1 and with the other 

signal in method 2. It should be noted that the number of potential MR damper models after the 

training phase can be fewer than 100. The UKF algorithm is sometimes unstable for some values 

of the index of dispersion on covariance samples and thus leads to poorly conditioned matrices. 

As a result, the parameter estimates on some of these models are returned as zero and such models 

are not used for the validation step. Methods 1 and 2 described in Figure 3.15 are performed for a 

particular mechanical model of MR damper. This mechanical model is denoted by the subscript 

‘x’ in the figure. Model training and validation, and thereby model selection based on lowest error, 

can be performed for different forms of the mechanical models of the MR damper. The current 

study considers three different model forms for the MR damper, and performs the identification 

and selection using methods 1 and 2 for each of these models. Finally, the model with the lowest 

MSE out of three models is selected. Figure 3.16 shows this error comparison method for each of 

the three models labelled as ‘x’, ‘y’ and ‘z’.  
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Figure 3.15. UKF Identification and Model Selection 

Figure 3.16. Error Comparison and Final Model Selection 
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3.7 MR Damper Models 

 The various computational models for MR damper available in the literature are based on 

several different modelling techniques used. Bouc-Wen, Bingham, Sigmoid, Dahl and LuGre are 

some of the phenomenological modelling techniques usually adopted for MR damper models. 

Several researchers have proposed modifications on the primary versions of these models 

depending on the behavior of these models under certain parameters. Some of these models 

consider the varying input voltage and current values in their formulation while the rest assume 

them as constant. Here, a set of such models for MR damper are selected that have the potential to 

replicate the structural response with a fair accuracy and at the same time are computationally 

efficient. These models generate a hysteresis response aligned with the experimental results 

observed and are able to generate responses in the structure that are similar to the experimental 

structural response. These models primarily differ in the formulation of the hysteretic component, 

𝑧. The UKF implementation for the training and validation steps remains stable and provides good 

estimates for states and parameters using these models. Models x, y and z indicated in the previous 

section are described here.  

3.7.1 Normalized Bouc-Wen Model 

The Bouc-Wen model defined in Section 3.5.2 contains some parameters that are redundant 

(Ma et al., 2004). The identification algorithms could fail to converge on values of these 

parameters. These redundant parameters are therefore usually assigned particular values for state 

and parameter estimation. A modified version of this model known as normalized Bouc-Wen 

model has been proposed by Ikhouane and Rodellar (2005) and used by several researchers (Chang 

et al., 2016; Ismail et al., 2009; Zhu & Lu, 2011). The normalized Bouc-Wen model removes any 

redundant parameters from the model and helps in proper state and parameter estimation using 

UKF. The original Bouc-Wen model has the restoring force, 𝑓 and hysteretic component, 𝑟 that 

are given as follows,  

 

𝑓 = 	𝛼g𝑘𝑥 + (1 − 𝛼g)𝑘𝑟 (3-50) 

�̇� = 𝐴�̇� −	𝛽g|�̇�||𝑟|&�g𝑟 − 	𝛾�̇�|𝑟|& (3-51) 
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where the ratio of post-yield to pre-yield stiffness is given by 𝛼g, the stiffness coefficient is given 

by 𝑘 and 𝐴, 𝑛, 𝛽g, 𝛾 are the model parameters determining the shape of the hysteresis curve. The 

normalized form of the Bouc-Wen model is proposed of the following form,  

 

𝑓 = 	𝑘E𝑥 + 𝑘F𝑧 (3-52) 

�̇� = 	𝜌(�̇� − 𝜎|�̇�||𝑧|&�g𝑧 + (𝜎 − 1)�̇�|𝑧|&) (3-53) 

where,  

𝑟; = 	 é
𝐴

𝛽g + 𝛾
ê

, 𝜌 = 	
𝐴
𝑟;
, 𝜎 = 	

𝛽g
𝛽g + 𝛾

  

𝑘E = 	𝛼g𝑘, 𝑘F = (1 − 𝛼g)𝑘𝑟;, 𝑧 = 	
𝑟
𝑟;
. (3-54) 

 

The normalization constant in the above equations is given by 𝑟;. The internal hysteresis variable 

is given by 𝑧. 𝑘E and 𝑘F are the post-yield stiffness and initial stiffness, respectively. The initial 

stiffness of 𝑧 is given by 𝜌 and the shape of the hysteresis loop is determined by 𝜎. The parameters 

𝑟;, 𝑧	and 𝜎 are non-dimensional in the above equation. The dimensions of 𝑘F and 𝜌 are ‘N’ and 

‘m-1’, respectively.  𝑘E has the dimension of ‘N/m’ and is similar as the structural stiffness, 𝑘. 

Since 𝑘E only depends on the structural displacement, it is kept common by combining both the 

structural and Bouc-Wen parameter values. The UKF algorithm might sometimes give improper 

estimations for parameters values that depend on similar structural properties, but are considered 

as different. The approach of combining 𝑘E and 𝑘 makes the UKF algorithm more stable. Thus, 

for the UKF system state and parameter estimation, the normalized Bouc-Wen model consists of 

four parameters (𝑘F, 𝜌, 𝑛, 𝜎) in addition to two structural parameters (𝑐, 𝑘). The equation of motion 

for the SDOF system with normalized Bouc-Wen model is given by,  

 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 + 𝑘F𝑧 = 	−𝑚�̈�¹.  (3-55) 

 

The augmented state vector of the resulting system, its base function and the observation equation 

are given by,  
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𝑋 = 	 [𝑥, �̇�, 𝑧, 𝑐, 𝑘, 𝑘F, 𝜌, 𝑛, 𝜎]¼  (3-56) 

  

𝑓�𝑋(𝑡), 𝑢(𝑡)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

�̇�
−�̈�¹ − (𝑐�̇� + 𝑘𝑥 + 𝑘F𝑧)/𝑚

𝜌(�̇� − 𝜎|�̇�||𝑧|&�g𝑧 + (𝜎 − 1)�̇�|𝑧|&)
0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (3-57) 

  

H(𝑋(𝑡), 𝑣(𝑡)) = 	 �
𝑥

−(𝑐�̇� + 𝑘𝑥 + 𝑘F𝑧)/𝑚� 	+ 	v.	 (3-58) 

3.7.2 Modified Dahl Model 

A Dahl model consists of Dahl hysteresis component and was proposed by Dahl (1976). 

The Coulomb force in the model is estimated using a smaller number of parameters when 

compared to the Bouc-Wen model. A modified version of the Dahl model has been developed 

primarily to represent better relationship between the force and velocity at lower velocity values 

(Xu et al., 2019). This model is shown is Figure 3.17. The damper force and the hysteresis 

component of the modified Dahl model is given by, 

 

𝑓 = 	𝑘𝑥 + 𝑐�̇� + 𝐹=𝑧 − 𝑓;  (3-59) 

�̇� = 	𝜎�̇��1 − 	𝑧sgn(�̇�)� (3-60) 

 

where the Coulomb frictional force is given by 𝐹= (in ‘N’), the initial force in the MR damper is 

given by 𝑓; (in ‘N’). The shape of the hysteresis loop is determined by the dimensionless parameter 

𝜎. Thus, for the UKF implementation, a total of five parameters are used, three parameters from 

the modified Dahl model (𝐹=, 𝜎, 𝑓;) and two from the structural system (𝑐, 𝑘). The resulting 

equation of motion of the SDOF system with the modified Dahl model is given by, 
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𝑚�̈� + 𝑐�̇� + 𝑘𝑥 + 𝐹=𝑧	 −	𝑓; = 	−𝑚�̈�¹.  (3-61) 

 

The augmented state vector, base function and the observation equation for the system with 

modified Dahl model are given by,  

 

𝑋 = 	 [𝑥, �̇�, 𝑧, 𝑐, 𝑘, 𝐹=, 𝜎, 𝑓;]¼  (3-62) 

  

𝑓�𝑋(𝑡), 𝑢(𝑡)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

�̇�
−�̈�¹ − (𝑐�̇� + 𝑘𝑥 + 𝐹=𝑧	 −	𝑓;)/𝑚

	𝜎�̇��1 − 	𝑧sgn(�̇�)�
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (3-63) 

  

H(𝑋(𝑡), 𝑣(𝑡)) = 	 �
𝑥

−(𝑐�̇� + 𝑘𝑥 + 𝐹=𝑧	 −	𝑓;)/𝑚�	+ 	v.	 (3-64) 

 

3.7.3 Modified LuGre Model 

The LuGre model is an extension of the Dahl model and was proposed by Canudas De Wit 

& Lischinsky (1995). It is evident from this study that the model is simple and yet provides highly 

accurate hysteretic response of the MR damper. The modified version of the LuGre MR damper 

Figure 3.17. Modified Dahl Model 

m 
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model has been developed by Jiménez & Álvarez-Icaza (2005). The mechanical model for a SDOF 

structure with modified LuGre looks similar as with the modified Dahl model and has been shown 

in Figure 3.18. The damper force and the hysteretic component are given by,  

 

𝑓 = 	𝑘𝑥 + 𝑐�̇� + 𝛽𝑧 + 𝜀�̇� + 𝑓; (3-65) 

�̇� = 	 �̇� − 	𝛼|�̇�|𝑧 (3-66) 

 

where, 𝛽 and 𝛼 are the generalized stiffness parameters and have dimensions of ‘N/m’ and ‘m-1’, 

respectively.  𝜀 is the generalized damping parameter of the model and has dimensions of ‘Ns/m’. 

The parameters  𝛽 and 𝛼 depend on the electric current in the damper, but for the current study, 

the electric current is assumed to be constant. Thus, a total of six parameters are required for UKF 

implementation of a SDOF system with modified LuGre model. The modified LuGre model 

requires four parameters (𝛽, 𝜀, 𝛼, 𝑓;) and the structural system is defined by two parameters (𝑐, 𝑘). 

The equation of motion of the resulting system is given by,  

 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 + 𝛽𝑧 + 𝜀�̇� + 𝑓; = 	−𝑚�̈�¹.  (3-67) 

 

The augmented state vector, base function and the observation equation for the system with 

modified LuGre model are given by,   

 

𝑋 = 	 [𝑥, �̇�, 𝑧, 𝑐, 𝑘, 𝛽, 𝜀, 𝛼, 𝑓;]¼  (3-68) 

  

𝑓�𝑋(𝑡), 𝑢(𝑡)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

�̇�
−�̈�¹ − (𝑐�̇� + 𝑘𝑥 + 𝛽𝑧 + 𝜀�̇� + 𝑓;)/𝑚

	�̇� − 	𝛼|�̇�|𝑧
0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (3-69) 
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H(𝑋(𝑡), 𝑣(𝑡)) = 	 �
𝑥

−(𝑐�̇� + 𝑘𝑥 + 𝛽𝑧 + 𝜀�̇� + 𝑓;)/𝑚� 	+ 	v.	 (3-70) 

 

3.8 Numerical Model Selection Example 

The three MR damper models described in Section 3.7 are used in this section to 

demonstrate the model selection process using the UKF. The UKF identification algorithm 

requires actual structural response for training and validation steps. In addition, two sets of actual 

structural response are needed to perform the model selection process for methods showcased in 

Figure 3.15 and 3.16. In this section, the model selection procedure is demonstrated using 

simulated sets of data generated for training and validation. These sets of data are generated using 

a mechanical model of the modified Dahl model on a SDOF structure excited with two different 

input signals. The response of this SDOF structure is then used to train and validate the normalized 

Bouc-Wen and modified LuGre model described in Sections 3.7.1 and 3.7.3. 

For the numerical model selection example described in this section and the experimental 

model selection performed in Chapter 5, it is assumed that the initial force 𝑓; in the MR damper 

remains negligible. Therefore, this term is removed from the equations of the MR damper models 

described in the previous section. The model selection process is demonstrated with zero initial 

force in all MR damper models. The removal of this term also lowers the computational time 

required for training and validation by a small amount.  

Figure 3.18. Modified LuGre Model 

m 
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3.8.1 Data Generation for Training and Validation 

The numerical setup for the generation of actual structural response consists of a SDOF 

structure with a modified Dahl model. The SDOF structure has a mass, 𝑚 = 50	kg,  damping 

coefficient, 𝑐 = 100	Ns/m and stiffness, 𝑘 = 20	kN/m. The Coulomb frictional force, 𝐹= and the 

hysteresis shape parameter, 𝜎 for the modified Dahl model are set as 25	N and 2500, respectively. 

This setup is subjected to excitation signals from a frequency sweep up and down and an El-Centro 

earthquake. The structural response for displacement, acceleration and force is recorded in 

MATLAB and these responses are then used for training and validation for other two mechanical 

models. The frequency sweep up and down signal is referred to as signal I and the El-Centro 

earthquake input is referred as signal II in the remaining part of this section.  

Signal I is generated in MATLAB using sampling frequency of the data at 4096 Hz. Figure 

3.19 shows acceleration of signal I with respect to time. The maximum frequency, 𝑓"#$ of 

acceleration is 10 Hz and the amplitude, 𝐴"#$ is set at 0.8 mm. The length of the signal, 𝑇 is 40 

seconds. The equation for the input displacement for this signal is given by,  

 

𝑥¹ = ï 𝐴"#$sin	(𝜋𝑡r𝑓"#$/𝑇)
𝐴"#$sin	(𝜋𝑡𝑓"#$[2𝑇 − 𝑡]/𝑇)

.  (3-71) 

 

The true system behavior is replicated by introducing a 1% RMS random, band-limited 

white noise as the process noise and measurement noise. Thus, the input excitation signal and the 

displacement and acceleration data are prepared for real experimental conditions. The presence of 

hysteretic behavior in the system is confirmed by the contribution of MR damper hysteretic force 

towards total force in Figure 3.20. Figure 3.21 shows the displacement, velocity and acceleration 

response of the system when excited with the input signal I. The maximum displacement of the 

structure is around 4.4 mm and the maximum acceleration is around 2.31 m/s2. The MR damper 

hysteresis loop is plotted in Figure 3.22.  
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Figure 3.19. Input Signal I – Frequency Sweep Up and Down 

Figure 3.20. Input Signal I – Modified Dahl Model Force Contribution 
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Signal II is a scaled El-Centro earthquake input measured in the north-south (NS) direction. 

This input is set at 50% of the original earthquake acceleration. The sampling frequency of the 

original data was available at 50 Hz. This sampling frequency of the input data is increased to 4000 

Hz in MATLAB by using ‘interp1’ command on the original data. The higher sampling frequency 

ensures better UKF convergence and estimates. The input acceleration data is shown in Figure 

3.23. The process and measurement noise are again set at 1% RMS. The displacement, velocity 

and acceleration response to this signal is shown in Figure 3.24. The presence of MR damper 

Figure 3.21. Input Signal I – Modified Dahl Model Displacement, Velocity and 
Acceleration Response 
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hysteretic force towards the total force in the system is confirmed in Figure 3.25 and the MR 

damper hysteresis loop is shown in Figure 3.26.  

 

 

Figure 3.22. Input Signal I – Modified Dahl Model Hysteresis Loop 

Figure 3.23. Input Signal II – El-Centro Earthquake NS Direction 
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Figure 3.24. Input Signal II – Modified Dahl Model Displacement, Velocity and Acceleration 
Response 
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Figure 3.26. Input Signal II – Modified Dahl Model Hysteresis Loop 

Figure 3.25. Input Signal II – Modified Dahl Model Force 
Contribution 
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3.8.2 Normalized Bouc-Wen Model Training and Validation 

The training and validation of the normalized Bouc-Wen model using the response of 

SDOF modified Dahl model under excitation signals I and II is demonstrated here. As indicated 

in Figure 3.15, the model is trained and validated by the same signal in method 1 and is validated 

from the other signal in method 2. Therefore, to perform method 1, the normalized Bouc-Wen 

model is trained using signals I and II and validated using the same signal used for training. The 

signal I training and validation approach is referred as trial 1 and the signal II approach is referred 

as trial 2 here. In method 2, the model is trained by signal I and then validated by signal II. This 

approach is referred as trial 3. The final results for all three trials are compared and a best candidate 

normalized Bouc-Wen model is selected to compare with the best candidate modified LuGre 

model from Section 3.8.3.  

The normalized Bouc-Wen model in this section is referred to as ‘MR Damperx’ from 

Figure 3.15. 100 prior distribution on parameters with 10 sets of LHSs and 10 samples of the 

indices of dispersion on covariance samples are taken for training the ‘MR Damperx’ with signals 

I and II. The potential ‘MR Damperx’ models are then validated with the various methods used. 

The number of trained models reduces from 100 due to poor convergence in the UKF 

implementation. A total of 35 potential ‘MR Damperx’ models are generated by training using 

signal I and 32 ‘MR Damperx’ models are generated by training using signal II. The distribution 

of the parameters of these potential ‘MR Damperx’ models for signals I and II is shown in Figures 

3.27 and 3.28, respectively. The UKF algorithm identifies the structural and damper properties 

well for both signals. The maximum number of values for each of these parameters remain in a 

suitable range for both signals. Although several potential ‘MR Damperx’ models failed to 

converge (only 30-35% trained models for both signals), it is evident that the UKF algorithm is 

clearly is able to provide quite consistent parameter estimates.  

The next step after training is the validation of these models. The displacement, velocity 

and acceleration response of the potential candidate ‘MR Damperx’ model with lowest MSE for 

trial 1 is shown in Figure 3.30. The candidate model estimates the states of modified Dahl model 

well. The comparison for force-displacement hysteresis loops is shown in Figure 3.29. Similarly, 

the potential candidate model with the lowest MSE for trials 2 and 3 is shown in Figures 3.31 and 

3.32, respectively. Figures 3.33 and 3.34 compare the hysteresis loops of this model for trials 2 

and 3, respectively. A better understanding of these hysteresis loops is obtained from Figures 3.35 
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and 3.36 for trials 2 and 3, respectively. In these figures, the force-displacement hysteresis loops 

are plotted for the time interval from 7 to 7.65 seconds.  

 

Figure 3.27. Distribution of Normalized Bouc-Wen Candidate Models for 
training with Signal I 

Figure 3.28. Distribution of Normalized Bouc-Wen Candidate Models for 
training with Signal II 
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Figure 3.29. Comparison of State Estimates for Normalized Bouc-Wen 
model with Lowest MSE in Trial 1 

Figure 3.30. Comparison of Hysteresis Loops for Normalized 
Bouc-Wen model with Lowest MSE in Trial 1 
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Figure 3.31. Comparison of State Estimates for Normalized Bouc-Wen model with Lowest MSE in 
Trial 2 
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Figure 3.32. Comparison of State Estimates for Normalized Bouc-Wen model with Lowest MSE in 

Trial 3 
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Figure 3.33. Comparison of Hysteresis Loops for Normalized Bouc-Wen 
model with Lowest MSE in Trial 2 

Figure 3.34. Comparison of Hysteresis Loops for Normalized Bouc-Wen 
model with Lowest MSE in Trial 3 
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Figure 3.35. Comparison of Hysteresis Loops between 7 and 7.65 seconds 
for Normalized Bouc-Wen model with Lowest MSE in Trial 2 

Figure 3.36. Comparison of Hysteresis Loops between 7 and 7.65 seconds 
for Normalized Bouc-Wen model with Lowest MSE in Trial 3 
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The above figures indicate that the UKF algorithm estimates system states and parameters 

well for the normalized Bouc-Wen model in all trials. A comparison of parameters of the best 

candidate model from each trial is made in Table 3.3. The structural damping and stiffness 

coefficients, 𝑐 and 𝑘, are close to the original values from the modified Dahl model. The parameters 

of the normalized Bouc-Wen model are very close to each other for all trials. A comparison of 

MSE and error in force with respect to time and displacement for each of these models is made in 

Table 3.4. A very close relation for error in force of each of these models is visible. The models 

are accurate and the error lies in the range of second decimal. A high value of MSE is observed 

for each of these models because of the low values of displacement and acceleration variance in 

the denominator of the MSE equation. The best candidate normalized Bouc-Wen model on the 

basis of MSE is thus obtained from Trial 2. This model also has a lowest error in force with respect 

to time and is very close to the lowest error in force with respect to displacement. This model will 

be further compared with the best candidate modified LuGre model obtained from next section.  

 

Table 3.3. Normalized Bouc-Wen Best Candidate Model for each Trial 

Trial Method 
Training 

Signal 

Validation 

Signal 
𝒄 

𝒌 

(𝐱	𝟏𝟎𝟒) 
𝒌𝒛 

𝝆 

(𝐱	𝟏𝟎𝟑) 
𝒏 𝝈 

1 1 I I 103.47 2.0007 24.53 2.485 1.06 1.02 

2 1 II II 103.13 2.0148 24.51 2.508 1.06 1.03 

3 2 I II 99.64 1.9919 24.81 2.482 1.03 1.02 

 

Table 3.4. Normalized Bouc-Wen Model Error Comparison 

Trial Method 
Training 

Signal 

Validation 

Signal 
𝑴𝑺𝑬 

𝑬𝒕 

(𝐱	𝟏𝟎�𝟐) 

𝑬𝒙 

(𝐱	𝟏𝟎�𝟐) 

1 1 I I 168.17 1.84 0.43 

2 1 II II 25.89 1.42 0.18 

3 2 I II 57.37 1.95 0.19 



 
 

80 

3.8.3 Modified LuGre Model Training and Validation 

In this section, the modified LuGre model is trained and validated using the response 

generated from modified Dahl model excited with signals I and II. Trials 1, 2 and 3 are conducted 

similar to Section 3.8.2 and modified LuGre model is treated as ‘MR Damperz’ from Figure 3.15. 

The best candidate modified LuGre model is compared to the best candidate normalized Bouc-

Wen model in the next section. 100 prior distributions on parameters are trained using signals I 

and II and the potential number of models available for training reduced due to poor convergence 

in the UKF algorithm. Thus, a total of 42 potential models are obtained by training from signal I 

and a total of 41 potential models are obtained by training from signal II. The distribution of 

parameters of trained models using signals I and II is shown Figures 3.37 and 3.38, respectively. 

The parameters lie in a suitable range for training done with both signals I and II. The UKF 

algorithm identifies a majority of the parameters in this range well.  

It is evident that only 40-45% of total models are available after training using both signals. 

These models are further validated for trials 1, 2 and 3. Figures 3.39, 3.40 and 3.41 show the 

estimates of states for potential modified LuGre models with lowest MSE validated in trials 1, 2 

and 3, respectively. An initial observation from these figures suggests that the model response is 

quite similar to the original response of modified Dahl model. The hysteresis loops for force-

displacement relationship of these models for trials 1, 2 and 3 is further compared in Figures 3.42, 

3.43 and 3.44, respectively. These figures are followed by the comparison of the force-

displacement hysteresis loops for the time interval from 7 to 7.65 seconds. The figures are shown 

in Figures 3.45 and 3.46 for trials 2 and 3, respectively. The high accuracy of the UKF estimation 

algorithm for the modified LuGre model is evident in these figures. All models seem to perform 

fairly well and therefore, it is imperative to compare these models on the basis of the MSE and 

force errors.  
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Figure 3.37. Distribution of Modified LuGre Candidate Models for training with Signal I 

Figure 3.38. Distribution of Modified LuGre Candidate Models for training with Signal II 
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Figure 3.39. Comparison of State Estimates for Modified LuGre model with Lowest MSE in Trial 1 
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Figure 3.40. Comparison of State Estimates for Modified LuGre model with Lowest MSE in Trial 2 
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Figure 3.41.  Comparison of State Estimates for Modified LuGre model with Lowest MSE in Trial 3 
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Figure 3.42. Comparison of Hysteresis Loops for Modified LuGre model 
with Lowest MSE in Trial 1 

Figure 3.43. Comparison of Hysteresis Loops for Modified LuGre model 
with Lowest MSE in Trial 2 
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Figure 3.44. Comparison of Hysteresis Loops for Modified LuGre model 
with Lowest MSE in Trial 3 

Figure 3.45. Comparison of Hysteresis Loops between 7 and 7.65 seconds 
for Modified LuGre model with Lowest MSE in Trial 2 



 
 

87 

 

The parameters of the best candidate model for each trial are shown in Table 3.5. The 

structural damping and stiffness coefficients, 𝑐 and 𝑘, remain close to the original value in the 

SDOF modified Dahl model system. The generalized stiffness parameters 𝛽 and 𝛼 of the modified 

LuGre model do not show high variation between trials. A slight variation is observed in the 

generalized damping parameter, 𝜀 and it ranges from 9 to 39 in these trials. Table 3.6. compares 

the MSE and force error with respect to time and displacement for each of the best candidate model 

from all trials. The lowest MSE is recorded for the model in trial 2. Although the error in force 

with respect to time and displacement is not the least for the model in trial 2, these values are still 

in an acceptable range. The error in force for all these models remains close to 0 and is only visible 

in the second decimal. Therefore, the model in trial 2 is selected as the best of candidate modified 

LuGre models and has been taken to the next section for comparison with the best candidate 

normalized Bouc-Wen model.  

 

Figure 3.46. Comparison of Hysteresis Loops between 7 and 7.65 seconds 
for Modified LuGre model with Lowest MSE in Trial 3 
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Table 3.5. Modified LuGre Best Candidate Model for each Trial 

Trial Method 
Training 

Signal 

Validation 

Signal 
𝒄 

𝒌 

(𝐱	𝟏𝟎𝟒) 

𝜷 

(𝐱	𝟏𝟎𝟒) 
𝜺 

𝜶 

(𝐱	𝟏𝟎𝟑) 

1 1 I I 101.20 1.9916 6.0827 9.15 2.436 

2 1 II II 102.35 1.9843 6.1484 38.39 2.442 

3 2 I II 99.04 1.9870 6.0827 12.84 2.417 

 

Table 3.6. Modified LuGre Model Error Comparison 

Trial Method 
Training 

Signal 

Validation 

Signal 
𝑴𝑺𝑬 

𝑬𝒕 

(𝐱	𝟏𝟎�𝟐) 

𝑬𝒙 

(𝐱	𝟏𝟎�𝟐) 

1 1 I I 116.76 0.81 0.13 

2 1 II II 99.40 3.00 0.24 

3 2 I II 135.45 3.58 0.31 

3.8.4 Model Form Selection 

The UKF algorithm used in Sections 3.8.3 and 3.8.4 estimated true modified Dahl model 

states well. The parameters of the identified normalized Bouc-Wen and modified LuGre model 

remained in an acceptable range for all trials. The best candidate model from each of these sections 

is compared in Table 3.7. The force error for each of these models remains close to zero and the 

MSE remains high due to small covariance in the denominator of its equation. On the basis of 

MSE, it is evident that the normalized Bouc-Wen model obtained from trial 2 is the best of all 

models. The convergence history of parameters for this model is shown in Figure 3.47. The 

parameters seem to converge during the initial 5 seconds of the excitation and then remain stable 

throughout the remaining time of the input signal. This behavior is evidence of the robustness of 

the UKF identification algorithm. The algorithm is able to quickly converge to obtain good 

parameter estimates.  
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Table 3.7. Numerical Model Selection 

Trial Model Method 
Training 

Signal 

Validation 

Signal 
𝑴𝑺𝑬 

𝑬𝒕 

(𝐱	𝟏𝟎�𝟐) 

𝑬𝒙 

(𝐱	𝟏𝟎�𝟐) 

2 
Normalized 

Bouc-Wen 
1 II II 25.89 1.42 0.18 

2 
Modified 

LuGre 
1 II II 99.40 3.00 0.24 

 

In this numerical study, the model with the lowest MSE is the normalized Bouc-Wen. The 

parameters of the model were determined using method 1 and the training and validation was 

performed using signal II. This model closely represents the modified Dahl model response in 

Section 3.8.1 and is therefore selected as the best model. The model selection process demonstrated 

for this numerical example indicates that the best model is obtained using method 1. However, this 

result does not demonstrate that the method 1 is better than the method 2 in model validation. The 

best model can be obtained from either of the methods and will depend on experimental conditions 

and data availability. The process of obtaining the best model for each of the methods will be 

further discussed with the experimental model selection performed in Chapter 5.  
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Figure 3.47. Convergence History of Parameters for the Selected Model 
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3.9 Summary 

The chapter on the numerical study of model selection can be summarized as: 

• The UKF uses an Unscented Transform and provides good approximation of system states 

and parameters for the hysteretic systems considered herein. (Section 3.5) 

• The model selection process consists of training and validation of the model and selecting 

the most appropriate model on the basis of MSE. (Section 3.6) 

• The training and validation steps can be performed using several methods and these 

methods vary depending upon the validation signal used. (Section 3.6) 

• The normalized Bouc-Wen, modified Dahl and modified LuGre are the mechanical models 

that estimate structural response with a fair accuracy and are computationally efficient. 

(Section 3.7) 

3.10 Findings 

The critical findings from this chapter are as follows: 

• The UKF is accurate to third order Taylor series expansion and minor variation in process 

and measurement noise does not change the accuracy of the estimates. (Section 3.5) 

• The UKF algorithm fails to converge sometimes due to poorly conditioned matrices. 

(Section 3.5) 

• The estimation of structural displacement, velocity and acceleration response for all 

mechanical models is very close to the original response in all trials. (Section 3.8) 

• The UKF algorithm converges parameters to the true value in the first five seconds of the 

input excitation signal for the numerical example. (Section 3.8) 
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 EXPERIMENTAL SETUP 

4.1 Introduction 

 An experiment is conducted to obtain high quality data for use in demonstrating the 

proposed model selection method with experimental data of a nonlinear device in a structure. A 

small-scale version of the MR damper is installed between the base and first story of the structure. 

Various constant current inputs are used, resulting in different passive-on systems each with 

nonlinear behavior. A hydraulic shake table is used at the Intelligent Infrastructure Systems 

Laboratory (IISL) at Purdue University. This chapter provides a full description of the experiment 

conducted, including the MR damper used. A SDOF is defined later and the setup of the MR 

damper on the structure is explained. The steps to operate the MR damper with necessary safety 

precautions have been provided to get best results from the damper.  

4.2 MR Damper Setup 

A magnetorheological (MR) damper is a semi-active controllable device used for energy 

dissipation in a structural system. The damper has nonlinear responses during the energy 

dissipation and is therefore chosen for this nonlinear identification study using Bayesian approach. 

The passive damping provided by the MR damper can be controlled to a certain extent by using 

various constant current inputs to the damper. Figure 4.1 shows a typical MR damper used for this 

study. 

Figure 4.1. MR Damper 
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4.2.1 Components 

The components for the MR damper can be divided into primary and secondary 

components. The primary components control the behavior of the damper while the secondary 

components provide proper functioning of the damper.  

a. Primary Components 

i. Paddle –  

A paddle along with foam and damping fluid moves horizontally between parallel plates 

and produces necessary damping force. Paddles are available in different dimensions and 

thicknesses. The thicknesses of paddle available in the lab are 0.135 in, 0.222 in and 0.238 

in. The average dimensions for these paddles are 1.502 in x 0.754 in, 1.496 in x 0.685 in 

and 1.747 in x 0.703 in respectively. 

ii. Foam –  

A foam padding is applied over the paddle and serves as a seat for the damper fluid. The 

foam used for the MR dampers is the open-cell camera foam. The foam absorbs the damper 

fluid and is the only component other than damper fluid touching parallel plates. The two 

thicknesses of the foam available are 0.037 in and 0.090 in.  

iii. Electromagnet - 

An electromagnet situated between parallel plates produces a magnetic field between the 

plates when an electric current is applied.  

iv. Parallel Plates –  

The parallel plates work as a housing for the electromagnet and provides a direction for the 

paddle and foam to move during motion. The plates attract damper fluid particles in motion 

and thus provide damping to the structure. The widths of the three available parallel plates 

are 0.302 in, 0.252 in and 0.248 in. The portion of the MR damper paddle inside this width 

of parallel plates is responsible for energy dissipation. The parallel plate with width 0.302 

in is used for story 1 on SDOF tests.  

v. Wonder Box –  

A Wonder Box takes a voltage input and supplies an output current to the electromagnet. 

A rotating knob on the Wonder Box changes the output voltage supply and thereby the 

effective output current. The dimensions of the Lord Rheonetic Wonder Box used for 

existing set of tests are 3.5 in x 2.5 in x 1.1 in. The box is also be referred to herein as 
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‘Device Controller’ and its model number is RD-3002-1. The external input rated voltage 

is 0-5 V and its rated output is 0.4 A/V. The recommended power supply specifications for 

the Wonder Box is 12 V 2 A.  

vi. Damper Fluid –  

The damper fluid is evenly applied over both sides of the foam using a paint brush. The 

magnetic behavior of the fluid is the primary reason for the damping behavior of the MR 

damper. The MR damper fluid used for these tests is labelled as MRF-140N.  

b. Secondary Components 

i. Shaft –  

The shaft is circular rod of small diameter connecting paddle on one end and the load cell 

on the other. The shaft has threaded rod of dimension 3-48 to go into the paddle. The other 

end of the shaft is connected to the load cell using a shaft adapter. The diameter of the shaft 

is 0.286 in.  

ii. Shaft Adapter –  

A shaft adapter is a small bolt with variable threads and diameters on two sides. The adapter 

is the interface for variable diameters of the load cell and the shaft. The portion of the 

adapter that goes into the load cell has 10-32 size while the other side going into the shaft 

has 3-48 size. 

iii. Load Cell –  

A load cell with a suitable capacity is used to dynamically record the tension and 

compression force generated from the damper. The load cell is situated between the shaft 

and the threaded rod. The specification of the load cell is given in the next section.  

iv. Threaded Rod –  

A threaded rod connects load cell on one end and reaction plate and stability spring with 

its plate on the other. The size of the threaded rod is 10-32.  

v. Mounting Tower –  

A mounting tower is used to raise the paddle assembly to a certain height to reach the level 

of damper parallel plates and electromagnet. The height of the mounting tower used for 

experiments is 10.65 in. The tower is used for the base story for the SDOF test.  

vi. Reaction Plate –  
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A reaction plate provides the necessary horizontal reaction force during damper 

compression and tension. The threaded rod is tightened with a nut near the reaction plate. 

It should be noted that the size of the reaction plate should be greater than the width of the 

opening of the mounting tower. The dimensions of the reaction plate used for the 

experiments are 1.721 in x 0.937 in x 0.111 in. The reaction plate with smaller width than 

the mounting tower will sink inside the tower and would not provide necessary reaction.  

vii. Stability Spring –  

A stability spring ensures vertical stability of the entire paddle to rod system. The stability 

spring consists of a stability plate on one end and the back of mounting tower on the other. 

viii. Stability Plate –  

A stability plate supports the other side of the wall of mounting tower and takes the 

incoming rod coming from the reaction plate. The stability plate works in conjunction with 

stability spring to provide vertical stability. The stability plate contains grooves parallel to 

the shorter side and they help to fasten the plate along with the spring to the mounting 

tower. The width of the plate is smaller than the outer dimensions of the mounting tower 

but greater than the width of the opening of mounting tower. The dimensions of the plate 

used for the experiments are 0.240 in x 1.336 in x 0.719 in. 

ix. Mounting Angle –  

A mounting angle is used to connect the parallel plates to the story above. The parallel 

plates are fastened to one leg of the mounting angle using small bolts. Loctite thread locker 

Blue 242 is applied to the threads to prevent bolts from loosening up due to the force 

generated from the paddle movement. Thus, mounting tower connects paddle from the 

story below and a mounting angle connects parallel plates from the story above. In addition, 

a mounting angle also provides an option for adjustment in the direction perpendicular to 

the shaft. The leg width and thickness of legs of the mounting angle is 1.5 in and 0.4 in. 

The length of the angle is 2.5 in. The slotted hole on the mounting angle has an average 

length of 1 in and diameter of 0.14 in.  

x. Mounting Angle Stability Plate –  

A mounting angle stability plate is situated on the hanging leg of mounting angle and 

prevents the electromagnet and parallel plates from rotating due to the torque created from 



 
 

96 

the damper. The average dimensions of the plate used for the experiments is 1.70 in x 1.0 

in x 0.111 in. 

xi. Nut –  

Nuts are used to tighten the interface between shaft, threaded rod and the load cell and also 

between threaded rod and reaction plates. The nuts are accompanied by suitable washers 

for proper force distribution. 

xii. Power Adapter –  

A 12 V 2 A power adapter is used to power up the Wonder Box. An adapter with a current 

range between 1 A and 1.5 A with 12 V can also be used provided the output current from 

the Wonder Box remains at 1 A. 

xiii. Connecting Wires –  

Connecting wires are used to connect the Wonder Box to the electromagnet. Current is 

measured using a Tektronix A622 AC/DC current probe placed around one of the two 

wires. 

 

Figures 4.2 and 4.3 show the primary and secondary components of the MR damper. The 

component names in the figure can be identified with the definitions above by numbers indicated 

in the bracket. 

 

Figure 4.2. Primary and Secondary Components 
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Figure 4.3. Primary and Secondary Components 
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Figure 4.4 shows the assembled part of the damper shaft components. Figure 4.5 shows the entire 

MR damper assembly mounted on the structure.  

 

 

4.2.2 Alignment 

In order to obtain a proper force-displacement curve from the MR damper, it is important 

to align the paddle and foam properly with respect to parallel plates and electromagnet. A properly 

aligned MR damper requires three levels of alignment, they are horizontal, vertical and twisting 

alignment. The steps for three levels of alignment and their significance are described in this 

section. A comparison between the force-displacement curves for a poorly and properly aligned 

MR damper is shown in Figure 4.6.  

 

 

Figure 4.4. Damper Shaft Components 

Figure 4.5. MR Damper Assembly on a Structure 
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a. Horizontal Alignment – 

Horizontal alignment of the paddle is necessary to ensure that the paddle does not interfere 

with the parallel plates. The paddle should be placed at center position and the paddle foam 

should line parallel with the parallel plates. In the case when the paddle does not lie at the 

center, the mounting angle can be adjusted in one direction to ensure that the incoming paddle 

lies exactly between the parallel plates. In addition to this, the portion of the paddle outside the 

parallel plates on both sides should be equal. This procedure will ensure a proper force-

displacement diagram during compression and tension (in and out) cycles.  

b. Vertical Alignment –  

The paddle with its foam should not project vertically out of the parallel plates. The paddle and 

foam should project out only in the direction of the shaft and not in the direction perpendicular 

to the shaft. Additionally, it should be ensured that the paddle does not touch the electromagnet 

between parallel plates. The mounting angle stability plate can be cut if needed to provide an 

extra adjustment in the vertical direction for parallel plates and electromagnet.  

The horizontal and vertical alignment for the MR damper is schematically shown in Figure 4.7.  

c. Twisting Alignment –  

The MR damper paddle may be able to rotate in the plane as shown in Figure 4.8. The rotation 

of the paddle in this plane or in other directions will lead to the generation of a twisting force 

and result in improper force-displacement curve. Therefore, the orientation of the paddle 

Properly Aligned MR Damper Poorly Aligned MR Damper 

Figure 4.6. Comparison of Force-Displacement Curve 
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should be checked thoroughly at the start and between tests. Figure 4.9 shows a proper aligned 

damper paddle in horizontal and vertical directions. 

 

 

4.2.3 Variables 

a. Damper Fluid –  

The amount of the applied damper fluid plays a major role in the behavior of the MR damper. 

The fluid should be applied uniformly over both sides of the paddle and should be applied only 

once before the start of a series of tests. Applying fluid again after the start of the test will lead 

to a slightly different behavior for the damper. 

Figure 4.7. Horizontal and Vertical Alignment Figure 4.8. Twisted Paddle 

Figure 4.9. MR Damper Paddle Alignment 
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b. Electric Current –  

The current output from the Lord Rheonetic Wonder Box is kept at 1 A for all of the tests 

discussed here. The damper is current-controlled, and thus any change in output current from 

the Wonder Box will lead to different behavior for the damper. 

c. Paddle Displacement – 

The effective paddle displacement should be kept at or below 5 mm (+/in and -/out) to obtain 

a proper force-displacement loop of the damper. An increase in the displacement at either or 

both sides will lead to varying force-displacement behavior of the damper. The variation of 

force-displacement curve with different maximum displacement values is shown in Figure 

4.10. The behavior of the curve is properly observed for displacements of less than 5 mm.  

 

Figure 4.10. Variation in the Force-Displacement Loop with Displacement 
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d. Temperature –  

The temperature of the electromagnet does not play a major role in the behavior of the damper. 

However, the temperature for the electromagnet and parallel plates should be kept low to 

ensure proper functioning of the MR damper. The passage of current when offered a resistance 

from the electromagnet results in heating of the electromagnet and thereby of parallel plates. 

Overheating of electromagnet would make it difficult to align the damper between tests and 

might also damage the electromagnet in long run. As a result, the temperature is kept under 

check by turning the damper off and on between specific set of tests.  

e. Foam and Paddle Thickness – 

The foam and paddle thickness should be varied depending on the distance between the parallel 

plates. There are three versions of varying thickness of paddles and two versions of foam 

available. These dimensions are described in Section 4.2.1. The damper paddle and foam 

should not restrict the movement of the shaft between the parallel plates when the damper is 

switched off.  

4.2.4 Instructions for Setting up MR Damper on an Experimental Setup 

Figure 4.11 shows a MR damper installed on the structure. The general instructions to set the MR 

damper on a structure are as follows:  

 

a. Scrape old foam over the paddle if 

signs of deterioration or peeling off 

are visible. Apply new foam using 

a gasket glue. The gasket glue takes 

4 hours to completely set and stick 

the paddle and foam.  

b. Apply damper fluid over the 

paddle. 

c. Connect paddle with its shaft, rod 

and load cell. Pass threaded rod 

through reaction plate and then by 

stability plate. The top wire from 

Figure 4.11. Aligned MR Damper on the Structure 
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the electromagnet goes into the black outlet of the Wonder Box and the bottom wire goes into 

the red outlet of the Wonder Box. The red wires in Figure 4.18 are the electromagnet wires.  

d. Place paddle between parallel plates and tighten nuts on one side of the load cell and on one 

side of the reaction plate. 

e. Follow alignment instructions as indicated in Section 4.2.2.  

f. Connect electromagnet wires and Wonder Box and connect adapter to the Wonder Box input.  

g. Turn Wonder Box knob to its full position (clockwise extreme) to ensure a constant output of 

around 11.6 V and 1 A. In the event when a variable current is desired from the Wonder Box, 

the Wonder Box should be connected to an external DC power supply using a BNC cable and 

the knob on the Wonder Box should be set to zero position (anticlockwise extreme). The 

external DC power supply thus can be used to vary the current passing through the Wonder 

Box.  

h. Provide necessary displacement to the structure to limit damper displacement to 5 mm.  

4.2.5 Safety Precautions 

The following safety precautions are recommended to protect the MR damper from unexpected 

failures:  

a. The Lord Rheonetic Wonder Box should not be left switched on for extended periods of time. 

The current supply and temperature of parallel plates and electromagnet might damage the 

components in the electromagnet. Ideally 

the Wonder Box should be switched off 

between sets of tests. Each set can be of 

around 10-15 minutes.  

b. In the event of a variable current 

requirement, the Wonder Box can be 

supplied input current through a DC power 

supply in addition to the input from the 

power adapter. A DC power supply (as 

shown in Figure 4.12) available in the IISL 

is GW Instek GPR-30600. The current in Figure 4.12. DC Power Supply 
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the Wonder Box can be varied using the DC power supply when the knob on the Wonder Box 

is set to zero (anticlockwise extreme).  

4.3 Experimental Setup 

A SDOF shear frame structure is constructed for the current study. The main components 

in the structure are composed of steel plates acting as lumped mass on each floor, steel plates of 

small thickness acting as columns, connector angles and nuts and bolts for joining columns to 

connector angles and thereby to steel plates. The experimental structure is modified to 

accommodate MR damper within the story. The sensors used for measurement of structural 

properties are accelerometers, force sensor (load cell), laser sensor and linear variable differential 

transformer (LVDT). The supporting equipment used for the experiments consists of a SO 

Analyzer System with a m+p VibPilot data acquisition system, power supplies and hydraulic 

actuators. The details on this supporting equipment along with the structural information and the 

sensors used are discussed in this section.  

4.3.1 Structural Properties 

The components of the experimental setup are described as follows, 

a. Floor Lumped Mass –  

A combination of steel plates is used as a lumped mass for each floor. A 15 in x 12 in plate has 

been placed over a 20 in x 12 in plate and is connected with nuts and bolts on four corners of 

the small plate. The thickness of the smaller plate is 0.52 in and that of larger plate is 0.36 in 

The average total combined mass of both small and large plate along with connector angles is 

52 lb. In order to connect columns and angles to the shake table a base plate of dimensions 24 

in x 12 in x 0.36 in is used. The remaining components are then connected above this base 

plate. 

b. Connector angles –  

Connector angles act as a medium to connect columns to steel plates on each floor. One leg of 

the connector angle is connected to the base plate and the other leg is connected to the column 

plate. The leg dimensions of the angle connecting columns are 1.32 in x 0.75 in while the 

dimensions for the leg connecting to the floor plate are 1.32 in x 1.03 in. The thickness of the 
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connector angle is 0.2 in. A total of two connector angles have been used to connect one end 

of each column on the floor. Therefore, a total of eight connector angles are used on one side 

of the floor mass to connect four ends of columns from the story opposite to that face. Thus, 

sixteen connector angles are required for the SDOF structure. Bolts with appropriate lock nuts 

are used for the interface between connector angles and other components. Each connector 

angle requires two sets of nuts and bolts to pass through the story mass. One set of nut and bolt 

is common between two connector angles to pass through the column between them. This set 

passes through the angle on one side, a column plate in between and then through the angle on 

the other side. The lock nuts are useful to prevent nuts from loosening up due to structural 

vibration.  

c. Column Plates –  

Column plates of dimensions 12 in x 1.25 in x 0.13 in are used between the story. The mass of 

each column plate is 0.52 lb. The effective unrestrained length of these columns after installing 

connector angles is 10.5 in A total of four plates are used as a column between each story. 

These columns are installed at four corners of the floor mass. Each column is connected to the 

connector angle with one set of nut and bolt on each end.  

A SDOF drawing of the experimental setup is shown in Figure 4.13.  

4.3.2 Sensors and Additional Mass 

The sensors and additional mass associated with them are described in this section.  

a. Accelerometer –  

A PCB Model 333B40 piezoelectric accelerometer is used to measure vibrations resulting from 

structural response. A total of two accelerometers have been used for the SDOF experimental 

setup. The average sensitivity of accelerometer is (± 10%) 500 mV/g. The peak measurement 

range of the accelerometer is ±10g and each accelerometer weighs 0.26 oz (7.5 gm). The 

frequency range for operation of the accelerometer is (±	5%) 0.5 to 3000 Hz. The sensing element 

used in the accelerometer is ceramic and a mounting magnet is used to install accelerometer on the 

structure. The mounting magnet has grooves on one side for the accelerometer and has a magnet 

on the other side to stick to the structure.  
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b. Force Sensor –  

PCB ICP Model 208C02 and 208B01 are used as force sensors for the experiments. The 

measurement range for model 208C02 is 100 lb and the sensitivity is ± 50 mV/lb. The lower 

and upper frequency response limit for the force sensor are (-5%) 0.001 Hz and 36000 Hz 

respectively. The measurement range for model 208B01 sensor is 10 lb. and the average 

sensitivity is ± 500 mV/lb. Both sensors have a 10-32 female mounting thread. The model 

208C02 sensor is used for the SDOF experimental structure. Figures 4.14 and 4.15 show 

accelerometer and force sensor installed on the structure.  

 

c. LVDT –  

Lucas-Schaevitz LVDT of range ± 1 in is used for the initial MR damper alignment 

experiments. The model number of the LVDT is DC-EC 1000 and the sensitivity is 10.381 

V/in. The measurement range is ± 10 V. The LVDT is powered from an appropriate power 

Figure 4.13. SDOF Setup 

(All dimensions are in inches) 
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supply. The power supply has been described in Section 4.3.4. The LVDT is calibrated using 

a calibration tower by changing the LVDT displacement in increments of 1 in throughout its 

range.  

  
 

d. Laser Sensor –  

Keyence Laser Sensor model LK-G157 is used for displacement measurement on the structure. 

The measurement range for the sensor is ± 40 mm. The sensitivity of sensor is 2.494 V/cm 

and the internal sampling is set at 20kHz (50μs). The reference point for the sensor is set at 

150 mm. The sensor is driven by a power supply and a control box, this is described further in 

Section 4.3.4. The Keyence laser sensor installed on the structure is shown in Figure 4.16.   

 

Figure 4.14. PCB Accelerometer Figure 4.15. PCB Force Sensor 

Figure 4.16. Keyence Laser Sensor 



 
 

108 

4.3.3 MR Damper on Experimental Structure 

The MR damper setup consisting of parallel plates, paddle, shaft, Wonder Box, tower, 

mounting angles etc. has been described in Section 4.2. The MR damper setup is installed between 

stories 0 and 1 for the experimental setup. The components of the MR damper consist of a thick 

paddle (1.496 in x 0.685 in x 0.222 in) and thin foam (0.037 in) The parallel plates are set at widest 

gap (0.302 in). The power adapter is 12 V/2 A (as shown in Figure 4.17) and the Wonder Box is 

numbered 1. In addition to this, it should be noted that the Wonder Box is supplied with input from 

a power adapter as well as a DC power supply for all set of tests. Figure 4.18 shows the setup for 

1 MR damper SDOF. The total mass of the experimental setup with sensors and MR damper setup 

is tabulated in table 4.1.  

 

 

 

  

Figure 4.17. Power Adapter 1 
(12V 2A) 

Figure 4.18. 1 MR Damper SDOF Setup 
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Table 4.1. SDOF Total Mass 

Story Material Mass (lb.) Total Mass (lb.) 

1 

Columns (x 4) 2.08 

59.71 

Floor Mass 52.29 

Laser Sensor 0.62 

Accelerometer (with Magnet) 0.07 

Laser Plate 1.32 

Laser Angle (with bolts) 0.28 

Connector Angle Bolts (x 8) 0.08 

MR Damper Parallel Plates 0.28 

MR Damper Shaft (from plate to paddle) 0.19 

MR Damper Angle 0.24 

Mounting Tower 3.14 

4.3.4 Supporting Equipment 

a. SO Analyzer System with VibPilot acquisition state –  

A Smart Office (SO) Analyzer system consisting of 24-bit sigma-delta A/D converters uses 

analog anti-aliasing filters at 80 kHz. The digital anti-aliasing filters in the system are 

determined based on the sampling rate. An AC ground setting is set for piezo (PCB) sensors 

and a DC ground setting is set for DC sensors. The sampling rate is set at 4096 Hz for existing 

set of experiments. In addition to the output 

from sensors, the system also takes inputs from 

actuator displacement (internal LVDT of the 

actuator) and the command signal (Command 

voltage from the Shore-Western system).  

b. Hydraulic Actuator –  

The 6 DOF shake table consists of six Shore 

Western 1.1 kip 91-series double-ended 

hydraulic actuators. Figure 4.19 shows 

hydraulic actuators situated on one side of the shake table.  

Figure 4.19. Hydraulic Actuators 
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c. Keyence Power Supply –  

A Keyence Model MS2-H50 is used as a power supply for the laser sensor. The output current 

for the power supply is 2.1 A and the voltage is 24 V. The rated power is 50 W for this model.  

d. Keyence Control Box –  

A Keyence control box model LK-G3001 is used in conjunction with the power supply and 

the laser sensor. This separate controller is used to take raw input data from the sensor and give 

output voltage into the acquisition system. The data from the control box is analyzed in the 

VibPilot system. The Keyence power supply and control box are housed together using a flat 

plate at the back. 

 

Figure 4.20 shows a m+p VibPilot data acquisition system for the test setup with inputs from 

different sensors and Figure 4.21 shows the Keyence Power Supply and Control Box.  

 

e. LVDT Power Supply –  

The power supply used for the nonlinear device identification experiments is Measurement 

Technologies PSD-40-15. Two PSD-40-15 power supplies are encased in the hard-shell box 

and the input and output terminals are kept on the hard-shell box. The power supply setup 

enclosed in a hard case is shown in Figure 4.22. 

Figure 4.20. VibPilot Acquisition 
System 

Figure 4.21. Keyence Power Supply 
(Left) and Control Box (Right) 
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f. Battery Backup and Surge Protector –  

An appropriate extension box to power up the 

acquisition system and power supplies is used for 

the experiments. The extension box is equipped 

with a fuse to protect the equipment from 

unwanted surge in main current supply.  

g. BNC Cable and Coaxial Cable –  

A Bayonet Neill–Concelman (BNC) cable is used 

for DC ground setting equipment and sensors and 

a coaxial cable is used for AC ground setting equipment and sensors. The cables are connected 

to equipment and sensors on one end and the VibPilot system on the other. A BNC female 

splice adapter is used to extend short BNC cables.  

4.3.5 Test Sets 

A set of experiments are conducted for the SDOF structure with 1 MR damper between the 

story. The setup for these set of experiments along with the associated sensors are tabulated in 

Table 4.2. The SDOF structure with 1 MR damper is shown in Figure 4.23. 

 

Table 4.2. SDOF Test Set with Sensors 

Set 1 

Setup SDOF 

Mode (without damper) 6 Hz 

MR Damper 1 (Between base and story 1) 

Accelerometers PCB 333B40 (x 2) 

Force Sensor PCB 208C02 

Displacement Keyence LK-G157 

Figure 4.22. New LVDT Power Supply 
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In addition to the above tests, two more sets of tests are performed initially. One set of tests is 

performed to assess functioning of the MR damper. The second set of tests are performed to make 

comparisons between the LVDT and the Keyence laser sensor. These comparison tests are 

performed on the SDOF setup with both laser sensor and a LVDT between the base and story 1. 

A MR damper nonlinear device identification experiment is shown in Figure 4.24. The setup for 

LVDT-Keyence tests is shown in Figure 4.25.  

  

4.4 Summary 

The chapter on the experimental setup can be summarized as: 

• A small-scale MR damper consists of primary and secondary components. The damper 

should be properly aligned (horizontal, vertical and twisting alignment) to get good results. 

(Section 4.2) 

Figure 4.24. MR Damper Identification Figure 4.25. LVDT-Keyence Test Setup 

Figure 4.23. SDOF, 1 MR Damper 
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• The behavior of the MR damper depends on a set of variables (fluid, current, paddle 

displacement, foam and paddle thickness). The hysteresis loop of the damper is affected 

drastically if the variables are too high or too low. (Section 4.2) 

• It is important to follow safety precautions for the MR damper due to its sensitive parts. 

(Section 4.2) 

• A shear frame experimental setup of SDOF is constructed for identification tests with MR 

damper. (Section 4.3) 

• The MR damper is installed between stories 0 and 1 for SDOF experimental tests. (Section 

4.3) 
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 MODEL SELECTION AND COMPARISON 

5.1 Introduction 

 The experimental setup described in Chapter 4 is subjected to different input excitation 

signals. In this chapter, the model selection process and the state and parameter estimation is 

performed on the experimental data with the UKF identification algorithm using measurements 

from displacement and acceleration sensors. The training and validation for this process are 

identified in Sections 5.3 and 5.4. The MSE with respect to displacement and acceleration is 

calculated for the validated signals in Section 5.4. The candidate model with the lowest MSE for 

each validation signal is identified and the parameters of the most appropriate model are identified 

in Section 5.5. As in the numerical implementation in Chapter 3, a comparison of error in force 

with respect to time and displacement is made for the models with the lowest MSE.  

5.2 Input Signals 

The input excitation signals selected for the experimental structure are such that they 

produce sufficient excitation for all parameters in the SDOF MR damper setup. These set of input 

signals are shown in Table 5.1. For each of the input signals mentioned in Table 5.1., the signals 

were varied with respect to amplitude 𝐴"#$, frequency 𝑓"#$ and the scale 𝑆 in the first set of 

preliminary experimental tests. These variations in signal properties helped to find the most 

appropriate values of the signal that give a substantial structural response for the UKF 

identification. These variations also help to observe structural response and discard any input 

signal that either does not produce a good hysteresis response, or is too large to permanently 

damage the current shear frame experimental structure.  In addition, any problems arising from 

initial MR damper alignment are averted due to the preliminary observation performed for the 

signal and structural response. Finally, the experimental structure is subjected to the input 

excitations for signals with properties in Table 5.1. Two sets of structural response are recorded 

for each input signal to account for any problems arising from error in data acquisition system or 

the shake table input.  
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Table 5.1. Experiment Input Signals 

Input 
Signal 
Type 

Mathematical Description 
of Input Displacement 

Signal 
# 

𝐴"#$
[mm] 

𝑓"#$ 
[Hz] 

𝑇 
[sec] 

𝑆 
[--] 

BLWN 𝑥¹ = lowPassFilter(𝑟, 𝐹) 𝑟g$¼~𝑁(0, 𝐴r) I 3 20 40 -- 

Amp 
Sweep 

Up-Down 
𝑥¹ = ï 𝐴sin(𝜋𝑡r 𝐹 𝑇⁄ )		

		𝐴sin(𝜋𝑡 𝐹[2𝑇 − 𝑡] 𝑇⁄ ) 
𝑡 < 𝑇 
𝑇 ≤ 𝑡 < 2𝑇 II 2 4 40 -- 

Earth-
quake 

𝑥¹ = 𝐴 ∙ 𝐸𝑙𝐶𝑒𝑛𝑡𝑟𝑜(𝑆𝑘 ∙ Δ𝑡) 𝑘 = 1,2, … , 𝑇 III 0.1 -- 42 0.4 

𝑥¹ = 𝐴 ∙ 𝐾𝑜𝑏𝑒(𝑆𝑘 ∙ Δ𝑡) 𝑘 = 1,2, … , 𝑇 IV 0.1 -- 51 0.4 

Step 𝑥¹ = ï(𝐴 𝑇⁄ )𝑡, 𝑡 < 𝑇
		𝐴, 𝑇 ≤ 𝑡 

𝑡 < 𝑇
𝑇 ≤ 𝑡 V 10 -- 0.1 -- 

Amp 
Sweep Up 𝑥¹ = 𝐴sin(𝜋𝑡r 𝐹 𝑇⁄ ) 𝑡 ≤ 𝑇 VI 2 4 40 -- 

Freq 
Sweep Up 𝑥¹ = 𝐴sin(𝜋𝑡r 𝐹 𝑇⁄ ) 𝑡 ≤ 𝑇 VII 0.75 20 40 -- 

Freq 
Sweep 

Up-Down 
𝑥¹ = ï 𝐴sin(𝜋𝑡r 𝐹 𝑇⁄ )		

		𝐴sin(𝜋𝑡 𝐹[2𝑇 − 𝑡] 𝑇⁄ ) 
𝑡 < 𝑇 
𝑇 ≤ 𝑡 < 2𝑇 VIII 0.5 20 40 -- 

 

 

The initial observations made from the MR damper hysteresis loops revealed that the 

damper shows two very different behaviors. For structural displacements that are less than 2 mm 

one behavior is observed, and for displacements more than 2 mm another behavior is observed. 

Here the focus is on the tractable behavior of the MR damper observed for structural displacements 

of more than 2 mm. A comparison of the behavior of MR damper for displacements of less than 2 

mm and more than 2 mm is made in Figure 5.1. The MR damper exhibits a displacement of less 

than 2 mm for input signal VIII and a displacement of more than 2 mm for input signal II.  

The change in behavior of this shear mode MR damper for displacements less than 2 mm 

can be mainly attributed to properties of the paddle and the damper fluid. For small displacements 

(≤ 2	𝑚𝑚), the point of contact of fluid particles with the paddle and parallel plates remains same. 

The displacement is only observed due to a small relative drift of these particles between the two 

contact surfaces. This behavior is in contrast to the behavior of the damper for large displacements 
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(≥ 2	𝑚𝑚) where the higher displacement is the result of overall paddle movement between 

parallel plates. Therefore, the properties of mechanical models of the MR damper would change 

for this behavior at small displacements. The models defined earlier in Chapter 3 do not account 

for these small variations in MR damper properties. Hence, the current study only focuses on the 

model selection process for MR damper with large displacements. Figure 5.2 shows the 

acceleration time history measured from the accelerometer installed on the shake table. The time 

histories are plotted only for input signals producing displacement of more than 2 mm in the 

experimental structure. These signals will further be discussed for training and validation in the 

Sections 5.3 and 5.4.  

 

 

 

Input Signal VIII Input Signal II 

Figure 5.1. Comparison of MR Damper Behavior for Different Displacements 
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Input Signal III 

Input Signal II Input Signal I 

Input Signal IV 

Input Signal V 

Figure 5.2. Experimental Input Signals 
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5.3 Model Training 

The training of MR damper models is performed in a similar way as performed in Chapter 

3. 100 prior distributions on MR damper parameters are taken by taking 10 sets of LHSs and 10 

samples of the indices of dispersion on covariances for each LHS. The indices of dispersion from 

Equation 3-43 are used for model training using experimental signals in this section. 10 sets of 

LHSs for each mechanical model are prepared by first finding an approximate set of parameters 

of the model for which the computational model produces results similar to the experiments. The 

LHS samples are then prepared in a range close to these approximate values. This preliminary 

work of first finding the approximate range of parameters and then preparing the LHS helps to 

keep the UKF estimation closer to the true values and gets estimation results quicker. The LHS 

samples can also be prepared without finding the initial range but, the UKF estimates might diverge 

from true values if the initial distribution is too far from true values (in orders higher than those of 

true values). The number of LHS samples can also be increased from 10 to get higher number of 

trained candidate models. A preliminary study with a higher number of LHS samples indicated 

that only slight improvement in the accuracy of the results was obtained with a very high 

computational time in training and validation for each model. It was found that the UKF estimates 

for 10 LHS samples remain very close to the results obtained with a higher number of LHS 

samples. This behavior can be mostly attributed to the convergence property of LHS.  Fewer LHS 

samples still produce a good distribution of candidate models and help in convergence to the final 

estimated values quicker. Thus, in this work the mechanical models are trained using 10 LHS 

samples at a high computational efficiency without compromising the accuracy of results.  

The UKF identification in the current study is performed using measurements from 

displacement and acceleration sensors. Therefore, the UKF estimation for displacement and 

acceleration is expected to be close to the true experimental states. However, the algorithm might 

sometimes underestimate or overestimate the force response. These estimations can be further 

refined by including the true force response in the training process. For the current study, the model 

training is only performed using displacement and acceleration measurements. The results from 

this study help to assess the quality of UKF estimations in the absence of measurements from one 

of the states. Thus, this study can be further extrapolated to the real-life scenarios where 

measurements are missing for some of the states.  
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The preliminary analysis using UKF revealed that good UKF estimates may be obtained 

for training performed using either signals I or III. Furthermore, the displacement and acceleration 

estimations remain consistent with all models for training performed using signal I. Therefore, 

UKF model selection algorithm is performed using displacement and acceleration measurements 

from this signal. Realistic process and measurement noise covariance values are incorporated into 

the identification algorithm by taking standard deviation of measurements recorded for a ‘NoInput-

Hydraulic’ test. In this test, the sensors and hydraulic actuators are kept running for 60 seconds 

without sending any input to the actuators. The inherent sensor measurement noise and actuator 

process noise is thus recorded and used for the UKF estimation algorithm. To reduce 

computational time for training, the input signals for training and validation are trimmed and only 

the portion of the signal with the acceleration input is used. This trimming of signals also helps to 

start UKF estimation only when the actual input signal is present. The part of the signal before or 

after the input signal (where there is no excitation, merely noise) is not used for the estimation and 

hence, quicker convergence to final estimated values is expected from the algorithm. Table 5.2 

shows the number of trained candidate models obtained for each mechanical model of the MR 

damper after training with signal I. It is observed that the modified Dahl model has the highest 

number of trained candidate models and has lower convergence issues with the UKF algorithm. 

The modified LuGre model seems to have the highest number of candidate models discarded due 

to converge problems and badly conditioned matrices.  

Figures 5.3, 5.4 and 5.5 show the distribution of parameters for the trained candidate 

normalized Bouc-Wen, modified Dahl and modified LuGre models, respectively.  It is observed 

that a majority of the parameter values of these trained candidate models remain close to each 

other in a narrow range. These distributions are a good indication to find the range of structural 

and individual mechanical damper properties. It is observed that the structural damping, 𝑐, remains 

close to 100 𝑁. 𝑠/𝑚 and the stiffness coefficient, 𝑘, remains close to 25000 𝑁/𝑚. It should be 

noted that the trained models shown in Tables 5.2 and in Figures 5.3, 5.4 and 5.5 are for candidate 

models with values of damping coefficient, 𝑐, ranging between 10 and 1000 𝑁. 𝑠/𝑚. The damping 

coefficient, 𝑐, for the current structure remains between these values and hence, any candidate 

models with 𝑐 out of this range should be discarded. For the current mechanical models, it is 

observed that this filter does not remove any of the potential trained candidate models. Only the 
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models with convergence issues that failed in training are removed with this filter of keeping 𝑐 

between the limits.  

 

Table 5.2. Trained MR Damper Models 

Model Total Trained Models (out of 100) 

Normalized Bouc-Wen 31 

Modified Dahl 64 

Modified LuGre 12 
 

 

 

 

 

 

Figure 5.3. Distribution of Normalized Bouc-Wen Candidate Models for Training with Signal I 
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Figure 5.4. Distribution of Modified Dahl Candidate Models for 
Training with Signal I 

Figure 5.5. Distribution of Modified LuGre Candidate Models for Training with Signal I 
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5.4 Model Validation 

In this section, the trained candidate MR damper models are validated using both methods 1 

and 2 as performed in Chapter 3. The results from method 1 will be useful for scenarios with 

limited availability of data and the results from method 2 will be useful for scenarios where data 

is available for multiple forms of input signal. The validation is performed using signal I for 

method 1 in Section 5.4.1. This step is followed by a validation performed by other signals in 

Section 5.4.2. The best candidate MR damper model is chosen in each section based on the lowest 

MSE. The force errors with respect to time and displacement for models with the lowest MSE are 

also compared in each subsection.   

5.4.1 Method 1 

The method 1 of model selection comprises of training and validating the model with the same 

signal. Thus, in this section, the model trained with response from signal I in Section 5.3 is 

validated using the same structural response. The best candidate model obtained for each 

mechanical form of the model is given as follows. 

 

a. Normalized Bouc-Wen Model 

The best candidate normalized Bouc-Wen model is obtained by validating 31 trained candidate 

models with signal I from the previous section. The results of this best model are shown in Figures 

5.6, 5.7 and 5.8. The contribution of different components of the force towards total force in the 

system is shown in Figure 5.6. The contribution of maximum hysteretic force remains constant 

throughout the length of the signal. Figure 5.7 shows the estimated force-displacement hysteresis 

loop of this model. It is observed that the model underestimates the actual maximum force in the 

system. A difference of around 2 N for the maximum force in compression and tension is observed 

for this model. The displacement response however, remains close to the actual structural response. 

Figure 5.8 shows the estimated displacement, velocity and acceleration response when compared 

to the original response. Windows a, b and c for each of these responses are provided on the side 

to compare the displacement, velocity and acceleration response from 35 to 37 seconds. The 

experimental velocity in these plots is calculated by differentiating the experimental displacement 

with respect to time using Newton’s forward difference formula. The UKF algorithm estimates the 
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displacement, velocity and acceleration response well. The underestimated force from this model 

is still under acceptable limits as only displacement and acceleration responses were used for 

training of the model.  

 

 

 

Figure 5.7. Comparison of Hysteresis Loops in Method 1 for Normalized 
Bouc-Wen Model with the Lowest MSE Trained using Signal I 

Figure 5.6. Force Contribution in Method 1 for Normalized Bouc-
Wen Model with the Lowest MSE Trained using Signal I 
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b. Modified Dahl Model 

Figures 5.9, 5.10 and 5.11 show the response of the modified Dahl model with the lowest MSE. 

The contribution of force towards total force in the system is shown in Figure 5.9. A constant 

maximum contribution towards the total force in the system is observed. This model also 

underestimates the maximum experimental force in the system by around 2 N. This is shown in 

the force-displacement hysteresis response in Figure 5.10. Windows a, b and c of Figure 5.11 

indicate that the model does a great job in estimating the actual structural displacement, velocity 

and acceleration response.  

 

a 

b 

c 

a 

b 

c 

Figure 5.8. Comparison of State Estimates in Method 1 for Normalized Bouc-Wen Model 
with the Lowest MSE Trained using Signal I 
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Figure 5.10. Comparison of Hysteresis Loops in Method 1 for 
Modified Dahl Model with the Lowest MSE Trained using Signal I 

Figure 5.9. Force Contribution in Method 1 for Modified Dahl 
Model with the Lowest MSE Trained using Signal I 



 
 

126 

 
 

c. Modified LuGre Model 

The contribution of hysteretic force towards total force in the system is shown in Figure 5.12. 

The initial observation on force-displacement hysteresis estimate in Figure 5.13 shows that the 

modified LuGre model with the lowest MSE is closer to the actual force in the system. The 

difference in this estimated force from the maximum experimental force remains lower than 2 N 

for most part of the response. The displacement, velocity and acceleration response of this model 

in windows a, b and c of Figure 5.14 for time interval from 35 to 37 seconds reveal that the UKF 

estimates are close to the true value of these responses.  

a 

b 

c 

c 

b 

a 

Figure 5.11. Comparison of State Estimates in Method 1 for Modified Dahl Model 
with the Lowest MSE Trained using Signal I 



 
 

127 

 

 

 

 

 

 

Figure 5.13. Comparison of Hysteresis Loops in Method 1 for 
Modified LuGre Model with the Lowest MSE Trained using Signal I 

Figure 5.12. Force Contribution in Method 1 for Modified LuGre 
Model with the Lowest MSE Trained using Signal I 
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5.4.2 Method 2 

For method 2, the candidate models trained using signal I can be validated by using any of the 

other signals mentioned in Table 5.1. The validation performed by each of these signals gives the 

required lowest MSE and force errors for model comparison and selection. Thus, each validation 

signal can lead to a model with the lowest MSE. The most appropriate model based on the lowest 

MSE can be same or different between these validation signals. The selection of the overall best 

model in the present study becomes difficult if the best model is different between the validation 

signals. Therefore, the validation process for method 2 is only performed using one signal from 

Table 5.1. The parameters of the model with the lowest MSE for each mechanical form of the 

model are then used to predict the displacement, velocity and acceleration response for other 

a 

b 

c 

a 

b 

c 

Figure 5.14. Comparison of State Estimates in Method 1 for Modified LuGre Model with 
the Lowest MSE Trained using Signal I 
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signals. An initial preliminary study indicated that a good force-displacement hysteresis response 

was observed for models validated using signal II. Therefore, the candidate models trained using 

signal I are validated with signal II in this section. The model with the lowest MSE is then selected 

for each mechanical form of the model and is shown next. In addition, these parameters of the best 

model are then used to estimate displacement, velocity, acceleration and force response for 

excitation signals III, IV and V. These figures are added in the Appendix of the thesis.  

 

a. Normalized Bouc-Wen Model 

The response of the normalized Bouc-Wen model with the lowest MSE for training with signal 

I and validation with signal II is shown in Figures 5.15, 5.16 and 5.17. The contribution of force 

from the model towards total force in the system is shown in Figure 5.15. The contribution of 

maximum hysteresis force remains constant for the major part of the input signal. The estimation 

of force-displacement hysteresis loop in Figure 5.16 shows that the model again underestimates 

the actual maximum force in the system by a small value. Figure 5.17 shows the displacement, 

velocity and acceleration estimates of the model. A small deviation from these responses is 

observed for 5-6 seconds near 40 and 75 seconds in the time history. The overall estimates 

however, remain close to the actual structural response. 

 

 

Figure 5.15. Force Contribution in Method 2 for Normalized 
Bouc-Wen Model with the Lowest MSE Trained using Signal I 
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Figure 5.16. Comparison of Hysteresis Loops in Method 2 for Normalized 
Bouc-Wen Model with the Lowest MSE Trained using Signal I 

Figure 5.17. Comparison of State Estimates in Method 2 for Normalized 
Bouc-Wen Model with the Lowest MSE Trained using Signal I 
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b. Modified Dahl Model 

The contribution of hysteresis force towards total force in the system for the modified Dahl 

model with the lowest MSE is shown in Figure 5.18. Figure 5.19 shows the estimated force-

displacement hysteresis loop of the model. The estimated force remains very close to the actual 

force near the positive side of the displacement. A small underestimation in the force is observed 

near the negative side of the displacement. This difference still remains within an acceptable limit 

considering only displacement and acceleration responses were used for model training. The 

displacement, velocity and acceleration response are shown in Figure 5.20. A slight 

underestimation in acceleration response is observed for this model.  

 

 

 

Figure 5.18. Force Contribution in Method 2 for Modified Dahl 
Model with the Lowest MSE Trained using Signal I 
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Figure 5.19. Comparison of Hysteresis Loops in Method 2 for 
Modified Dahl Model with the Lowest MSE Trained using Signal I 

Figure 5.20. Comparison of State Estimates in Method 2 for Modified 
Dahl Model with the Lowest MSE Trained using Signal I 
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c. Modified LuGre Model 

Figure 5.21 shows the contribution of hysteretic force for modified LuGre model with the 

lowest MSE towards the total force in the system. The force-displacement hysteresis response is 

shown in Figure 5.22. The estimated force for the model remains very close to the true force in the 

system. A maximum difference of around 1 N is observed for the positive side of the force with 

negative displacement. An initial comparison with other models suggests that the overall force 

estimate of this model is one of the closest to the true value in the system. The displacement, 

velocity and acceleration response of the model is shown Figure 5.23. A slight underestimation in 

acceleration response is observed over the length of the input signal. The displacement and velocity 

estimates remain very close to the true structural response.  

 

 

Figure 5.21. Force Contribution in Method 2 for Modified 
LuGre Model with the Lowest MSE Trained using Signal I 
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Figure 5.22. Comparison of Hysteresis Loops in Method 2 for 
Modified LuGre Model with the Lowest MSE Trained using Signal I 

Figure 5.23. Comparison of State Estimates in Method 2 for Modified 
LuGre Model with the Lowest MSE Trained using Signal I 
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5.5 Model Selection 

The basis for model selection and comparison remains similar to the numerical model 

selection performed in Chapter 3. A candidate model with the lowest MSE for each of the 

mechanical forms is selected from the validation step. The three models are then compared to each 

other to select the overall best model based on the lowest MSE. This procedure is performed with 

both methods 1 and 2 and thus, two models are obtained individually for these methods. The 

efficiency of UKF estimates in method 1 plays an important role for real-life scenarios where the 

structural response is only available for one signal (for example, an earthquake). The results from 

method 1 thus help to understand the behavior of UKF for training and validation with only one 

signal.   

Tables 5.3 shows the parameters of the best normalized Bouc-Wen model obtained from 

methods 1 and 2. It is observed that the model parameters remain same and a single model provides 

results with the lowest MSE for both methods. The damping, 𝑐, of this model is 117.59 𝑁 ∙ 𝑠/𝑚 

and the stiffness, 𝑘, is estimated to be 25090 𝑁/𝑚. The initial stiffness, 𝑘F, is 10.25 𝑁 and the 

initial stiffness of 𝑧 given by 𝜌 is 11337 𝑁. The value of 𝑛 is 1.12 and the value of 𝜎 is 0.95.  

 

Table 5.3. Normalized Bouc-Wen Model with the Lowest MSE in Methods 1 and 2 

Method Training 
Signal 

Validation 
Signal 𝒄 

𝒌 
(𝐱	𝟏𝟎𝟒) 

𝒌𝒛 
𝝆 

(𝐱	𝟏𝟎𝟑) 
𝒏 𝝈 

1 I I 117.59 2.5090 10.25 11.337 1.12 0.95 

2 I II 117.59 2.5090 10.25 11.337 1.12 0.95 

 

The parameters of the modified Dahl model with the lowest MSE in methods 1 and 2 is shown in 

Table 5.4. Two separate candidate models are obtained for methods 1 and 2. The damping, 𝑐, of 

these models remain between 100 and 150 𝑁 ∙ 𝑠/𝑚 and the stiffness, 𝑘, remains close to 25000 

𝑁/𝑚. The Coulomb frictional force remains close to 10 𝑁 and 𝜎 remains near 11000.  
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Table 5.4. Modified Dahl Model with the Lowest MSE in Methods 1 and 2 

Method Training 
Signal 

Validation 
Signal 𝒄 

𝒌 
(𝐱	𝟏𝟎𝟒) 

𝑭𝒅 
𝝈 

(𝐱	𝟏𝟎𝟒) 

1 I I 111.74 2.4973 10.56 1.0579 

2 I II 140.82 2.5282 9.70 1.1473 

 

Table 5.5 shows the parameters of two candidate modified LuGre models with the lowest MSE 

obtained from methods 1 and 2. The damping, 𝑐, of these models remain close to 100 𝑁 ∙ 𝑠/𝑚 and 

the stiffness, 𝑘, remains close to 25000 𝑁/𝑚. The value of 𝛽 is dispersed more than the other 

parameters and remains between 50000 and 90000 𝑁/𝑚. The value of 𝛼 remains in the range of 

5000 and 7500 𝑚�g. The generalized damping, 𝜀, is close to 200 𝑁 ∙ 𝑠/𝑚 for these models.  

 
Table 5.5. Modified LuGre Model with the Lowest MSE in Methods 1 and 2 

Trial Method Training 
Signal 

Validation 
Signal 𝒄 

𝒌 
(𝐱	𝟏𝟎𝟒) 

𝜷 
(𝐱	𝟏𝟎𝟒) 

𝜺 
𝜶 

(𝐱	𝟏𝟎𝟑) 

1 1 I I 95.59 2.4976 8.1962 194.31 7.281 

2 2 I II 122.29 2.5034 5.9987 222.86 5.614 

 

A comparison of errors for each of the best mechanical models trained and validated using 

signal I is shown in Table 5.6. The MSE and the force error with respect to time and displacement 

for each of these models are tightly distributed. The value of the MSE is high due to the standard 

deviation of displacement and acceleration response in the denominator of the equation for MSE. 

The displacement, velocity and acceleration response for these models is close to the actual 

observed experimental response. The lowest MSE is observed for the modified Dahl model. 

Therefore, this model is chosen to be the best candidate MR damper model in method 1. The force 

error with respect to time and displacement is also the lowest for this model when compared to 

other mechanical models.  
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Table 5.6. MR Damper Mechanical Models with the Lowest MSE in Method 1 

Model (Method 1) 
𝑴𝑺𝑬 
(𝐱	𝟏𝟎𝟓) 

𝑬𝒕 
(𝐱	𝟏𝟎�𝟐) 

𝑬𝒙 
(𝐱	𝟏𝟎�𝟐) 

Normalized Bouc-Wen 54.88 30.13 2.93 

Modified Dahl 54.86 29.59 2.79 

Modified LuGre 56.71 30.40 2.86 

 

Table 5.7 compares the error for each of the best candidate model obtained from method 

2. In addition, the error with these models when compared to the response of the structure for 

signals III, IV and V is shown in Table 5.8 (Figures in Appendix). Again, these error values are 

closely distributed between these models. The lowest MSE from Table 5.7 is recorded for the 

modified Dahl model and thus, this model is selected as the best candidate MR damper model for 

method 2. The force error with respect to time is also the lowest for this model. The force error 

with respect to displacement is highest for this model, however, it is still small and remains in 

acceptable limits for the selection of this model.  

 

Table 5.7. MR Damper Mechanical Models with the Lowest MSE in Method 2 

Model (Method 2) 
𝑴𝑺𝑬 
(𝐱	𝟏𝟎𝟓) 

𝑬𝒕 
(𝐱	𝟏𝟎�𝟐) 

𝑬𝒙 
(𝐱	𝟏𝟎�𝟐) 

Normalized Bouc-Wen 2.93 19.09 1.39 

Modified Dahl 1.62 18.10 1.61 

Modified LuGre 2.49 25.14 1.57 
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Table 5.8. Comparison of Errors from Different Signals for MR Damper Mechanical Models 
with the Lowest MSE in Method 2 

Validation 
Signal Model 

𝑴𝑺𝑬 
(𝐱	𝟏𝟎𝟓) 

𝑬𝒕 
(𝐱	𝟏𝟎�𝟐) 

𝑬𝒙 
(𝐱	𝟏𝟎�𝟐) 

III 

Normalized Bouc-Wen 9.65 30.65 1.79 

Modified Dahl 10.86 32.15 1.99 

Modified LuGre 12.32 47.42 2.35 

IV 

Normalized Bouc-Wen 18.15 45.07 2.65 

Modified Dahl 19.78 45.51 3.10 

Modified LuGre 19.18 48.78 2.72 

V 

Normalized Bouc-Wen 29.63 42.74 3.73 

Modified Dahl 38.28 45.52 4.63 

Modified LuGre 35.31 38.45 3.47 

 

Thus, the parameters of modified Dahl model given in Table 5.4 are the parameters for the 

selected MR damper models from methods 1 and 2. The model from method 2 will be preferred 

over the model from method 1 if multiple sets of response data from different signals is available 

for the structure. This selection is based on the lower MSE of the model in method 2. In the event 

of limited availability of the data, the model from method 1 still performs comparatively well and 

can be selected as the best model. The inference history of parameters for this selected MR damper 

for methods 1 and 2 is shown in Figures 5.24 and 5.25, respectively. The parameter 𝜎 in Figure 

5.24 converges towards the final estimated value in about 10 seconds and remains close to this 

value for the rest of the signal. This behavior of  𝜎 is mainly because of the sensitivity of this 

parameter for a small variation in input signal. However, the parameter converges well in the 

training of the best model in method 2 as shown in Figure 5.25. A quick convergence of other 

parameters to final estimated values is also evident from these figures. It is observed that the 

parameters converge to the final estimated value during initial 5-10 seconds of the input signal and 

remain close to the final estimated value for rest of the time during the input excitation. 
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Figure 5.24. Convergence History of Parameters for the Selected 
Model from Method 1 
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Figure 5.25. Convergence History of Parameters for the Selected 
Model from Method 2 
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5.6 Summary 

The findings of the chapter on experimental model selection can be summarized as: 

• The MR damper shows very different behavior for displacement less than 2 mm and more 

than 2 mm. (Section 5.2) 

• The model selection process is performed for the input signals producing displacement of 

more than 2 mm. (Section 5.2) 

• The modified Dahl model has the highest percentage of trained candidate models and the 

modified LuGre model has the lowest percentage of trained candidate models. (Section 

5.3) 

• The UKF estimates for each mechanical form of the model in methods 1 and 2 is close to 

the true response of the system. (Section 5.4) 

• The UKF force estimates are underestimated in some cases as only displacement and 

acceleration response is used for model training. (Section 5.4) 

• The parameters of the modified Dahl model have the lowest MSE in both methods 1 and 

2. (Section 5.5) 

• The selected model with method 1 is found to still be effective when a structural response 

to only one signal is available (for example, an earthquake). (Section 5.5) 
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 CONCLUSION AND FUTURE WORK 

The conclusions from this thesis on Bayesian model selection are summarized in Section 

6.1 of this chapter. The recommendations for future work on model selection are made in Section 

6.2.  

6.1 Conclusions 

The study on experimental nonlinear device selection suggests that inducing nonlinearity in 

an experimental structure is simple. A number of devices emulating nonlinearity in the 

experimental structure are available. However, it is difficult to control, quantify and align these 

devices with high repeatability, efficiency and ease of implementation in the experimental 

structure. The nonlinearity provided by the devices is normally due to cubic, trigonometric or 

complex differential terms in their EOM. It is not possible for a single device to satisfy all 

requirements for nonlinearity and hence, several factors were prioritized to select a most suitable 

device for the study. A MR damper provides controllable and repeatable nonlinearity with a 

complex EOM. This device was selected as a suitable device to propagate nonlinearity for the 

current nonlinear identification study. It is inferred that a proper alignment of the MR damper is 

necessary while setting it up on the experimental structure. A poorly aligned damper produces 

improper force-displacement hysteresis response. The variables (damper fluid, electric current, 

paddle displacement, temperature, paddle and foam thickness) of MR damper play a major role in 

its behavior and should always be set within the specified range for each.  

 The experimental setup of the chosen MR damper was identified using three mechanical 

models, each trained and validated using input excitation signals, and structural displacement and 

acceleration response. The identification algorithm is based on Bayesian filtering technique. This 

filtering technique approximates states of general probabilistic state space models that are 

represented by sequence comprising of conditional probability distributions. The Markovian 

property of states followed in this technique suggests that the current and future states are 

independent of prior states in the system given states at the previous time step. In addition, the 

current measurements are independent of prior measurements and states given the current state of 

the system. The Kalman filter, EKF, constrained EKF and UKF are normally used filtering 
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techniques to predict system states and parameters. The UKF is the slowest of all nonlinear 

algorithms but is highly accurate and useful for systems with high nonlinearity. Therefore, the MR 

damper model identification study was performed using the UKF.  

 The model identification is performed by training and validation steps. The parameters of 

the UKF identification algorithm 𝛼h, 𝛽h and 𝜅 play a major role in getting good estimates for the 

trained models. The model training should be performed with a signal that produces substantial 

dynamic excitation in the system. This dynamic excitation is needed for the identification 

algorithm to estimate states and parameters of the system accurately. The majority of parameters 

of the trained models lie in a narrow range. The modified Dahl model gives the highest number of 

trained models and the modified LuGre model gives the lowest number of trained models for a 

similar prior distribution from indices of dispersion. The number of trained models is often less 

than the starting number of distributions on parameters. The estimation algorithm fails sometimes 

because of lack of convergence in the covariance matrix leading to poorly conditioned matrices. 

The parameters for trained models usually converge to final estimated value in initial five to ten 

seconds of excitation from the input signal.  

 The model validation is usually performed with different input excitation signals and the 

selection of this signal depends on the validation method used. The model with the lowest MSE 

also depends on the validation signal used and can be different for multiple forms of the validation 

signal. Model validation with the same signal as used for training is important for real-life 

scenarios where limited data for structural response is available. The model selection in the current 

study was performed on the basis of the lowest MSE between all mechanical forms of the model 

validated using a similar input excitation signal. The MSE and force error for each best candidate 

mechanical form of the model are closely distributed. The modified Dahl model gives the lowest 

MSE for both methods 1 and 2.  

 The lessons learned from the model selection study performed in this thesis are important 

for similar studies to be performed for other devices emulating nonlinearity in experimental 

structures and for real-life scenarios. This study will serve as a basis to research more on nonlinear 

damage identification for full-scale structures using Bayesian technique. The linear approach for 

damage identification currently used limits the knowledge of failure analysis and hence asks for 

more detailed nonlinear analysis. The identification approach of the current model selection 

process performed on the small-scale structure can be extended to full-scale systems since the 
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dimensionality of the current problem was analogous to a full-scale system, without undue model 

uncertainty.  

6.2 Future Work 

The model selection process demonstrated in this thesis was performed by keeping the 

parameters of the UKF identification algorithm 𝛼h, 𝛽h and 𝜅 constant. A small deviation in values 

of these parameters can lead to changes in the convergence behavior of the algorithm. However, a 

detailed study on the behavior of the algorithm with changing parameters is needed for the 

mechanical models of the MR damper used in this study. In addition, the model training was 

performed by a constant set of indices of dispersion. A more detailed analysis with higher indices 

of dispersion on prior distributions is recommended to reduce error due to convergence and 

increase the percentage of trained models. The variance on each parameter in the current study 

was increased simultaneously instead of taking a staggered configuration for indices of dispersion 

with different combinations of variance values for each parameter. The number of prior 

distributions on parameters will increase manifold and the computational efficiency of the 

algorithm will decrease in the latter. A study on the percentage of trained models and the accuracy 

of UKF estimates with staggered variance values is needed. Lastly, the efficiency of this UKF 

algorithm for MR damper model selection is to be compared with other estimation methods like 

constrained UKF, CEKF and particle filter methods.   

A comparison of the UKF estimates with several other experimental nonlinear devices can 

also be made. A variable friction damper was developed in the IISL during the preliminary device 

selection study. A sandwich configuration of the variable friction damper with angle plates and 

Teflon produced repeatable and controllable nonlinearity. The friction between these plates was 

varied by changing the width of the rubbing plate. This preliminary study was performed using a 

small shaker with the damper attached to it. The force and displacement response were measured 

using the load cell and LVDT. A separate nonlinear structural identification can be done using this 

device installed on the current SDOF experimental structure. In addition, the model selection study 

can also be done on a 3 DOF setup with varying number of MR dampers or other nonlinear devices. 
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APPENDIX 

1. Normalized Bouc-Wen Model 

Figure A.1. Comparison of State Estimates in Signal III for Normalized Bouc-Wen 
Model with the Lowest MSE Trained using Signal I 

Figure A.2. Comparison of Hysteresis Loops in Signal III for Normalized Bouc-Wen 
Model with the Lowest MSE Trained using Signal I 
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Figure A.3. Comparison of State Estimates in Signal IV for Normalized Bouc-Wen 
Model with the Lowest MSE Trained using Signal I 

Figure A.4. Comparison of Hysteresis Loops in Signal IV for Normalized Bouc-Wen 
Model with the Lowest MSE Trained using Signal I 
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Figure A.5. Comparison of State Estimates in Signal V for Normalized Bouc-Wen 
Model with the Lowest MSE Trained using Signal I 

Figure A.6. Comparison of Hysteresis Loops in Signal V for Normalized Bouc-Wen 
Model with the Lowest MSE Trained using Signal I 
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2. Modified Dahl Model 

Figure A.7. Comparison of State Estimates in Signal III for Modified Dahl Model 
with the Lowest MSE Trained using Signal I 

Figure A.8. Comparison of Hysteresis Loops in Signal III for Modified Dahl Model with 
the Lowest MSE Trained using Signal I 
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Figure A.9. Comparison of State Estimates in Signal IV for Modified Dahl Model 
with the Lowest MSE Trained using Signal I 

Figure A.10. Comparison of Hysteresis Loops in Signal IV for Modified Dahl Model 
with the Lowest MSE Trained using Signal I 
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Figure A.11. Comparison of State Estimates in Signal V for Modified Dahl Model 
with the Lowest MSE Trained using Signal I 

Figure A.12. Comparison of Hysteresis Loops in Signal V for Modified Dahl Model with 
the Lowest MSE Trained using Signal I 
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3. Modified LuGre Model 

Figure A.13. Comparison of State Estimates in Signal III for Modified LuGre Model 
with the Lowest MSE Trained using Signal I 

Figure A.14. Comparison of Hysteresis Loops in Signal III for Modified LuGre Model 
with the Lowest MSE Trained using Signal I 
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Figure A.15. Comparison of State Estimates in Signal IV for Modified LuGre Model 
with the Lowest MSE Trained using Signal I 

Figure A.16. Comparison of Hysteresis Loops in Signal IV for Modified LuGre Model 
with the Lowest MSE Trained using Signal I 
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Figure A.17. Comparison of State Estimates in Signal V for Modified LuGre Model 
with the Lowest MSE Trained using Signal I 

Figure A.18. Comparison of Hysteresis Loops in Signal V for Modified LuGre Model 
with the Lowest MSE Trained using Signal I 
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